{"title":"使用相对深度图的单目深度估计","authors":"Jae-Han Lee, Chang-Su Kim","doi":"10.1109/CVPR.2019.00996","DOIUrl":null,"url":null,"abstract":"We propose a novel algorithm for monocular depth estimation using relative depth maps. First, using a convolutional neural network, we estimate relative depths between pairs of regions, as well as ordinary depths, at various scales. Second, we restore relative depth maps from selectively estimated data based on the rank-1 property of pairwise comparison matrices. Third, we decompose ordinary and relative depth maps into components and recombine them optimally to reconstruct a final depth map. Experimental results show that the proposed algorithm provides the state-of-art depth estimation performance.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"5 1","pages":"9721-9730"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"105","resultStr":"{\"title\":\"Monocular Depth Estimation Using Relative Depth Maps\",\"authors\":\"Jae-Han Lee, Chang-Su Kim\",\"doi\":\"10.1109/CVPR.2019.00996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel algorithm for monocular depth estimation using relative depth maps. First, using a convolutional neural network, we estimate relative depths between pairs of regions, as well as ordinary depths, at various scales. Second, we restore relative depth maps from selectively estimated data based on the rank-1 property of pairwise comparison matrices. Third, we decompose ordinary and relative depth maps into components and recombine them optimally to reconstruct a final depth map. Experimental results show that the proposed algorithm provides the state-of-art depth estimation performance.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"5 1\",\"pages\":\"9721-9730\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"105\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monocular Depth Estimation Using Relative Depth Maps
We propose a novel algorithm for monocular depth estimation using relative depth maps. First, using a convolutional neural network, we estimate relative depths between pairs of regions, as well as ordinary depths, at various scales. Second, we restore relative depth maps from selectively estimated data based on the rank-1 property of pairwise comparison matrices. Third, we decompose ordinary and relative depth maps into components and recombine them optimally to reconstruct a final depth map. Experimental results show that the proposed algorithm provides the state-of-art depth estimation performance.