A. Şabik, M. Karabörk, G. Ceyhan, M. Tümer, M. Dığrak
{"title":"多齿席夫碱配体及其La(III)配合物:合成、表征、抗菌、热学和电化学性能","authors":"A. Şabik, M. Karabörk, G. Ceyhan, M. Tümer, M. Dığrak","doi":"10.1155/2012/791219","DOIUrl":null,"url":null,"abstract":"We synthesized the Schiff base ligands H2L1–H2L4 and their La(III) complexes and characterized them by the analytical and spectroscopic methods. We investigated their electrochemical and antimicrobial activity properties. The electrochemical properties of the ligands H2L1–H2L4 and their La(III) complexes were studied at the different scan rates (100 and 200 mV), different pH ranges (pH=2−12), and in the different solvents. The electrooxidation of the Schiff base ligands involves a reversible transfer of two electrons and two protons in solutions of pH up to 5.5, in agreement with the one-step two-electron mechanism. In solutions of pH higher than 5.5, the process of electrooxidation reaction of the Schiff base ligands and their La(III) complexes follows an ECi mechanism. The antimicrobial activities of the ligands and their complexes were studied. The thermal properties of the metal complexes were studied under nitrogen atmosphere in the range of temperature 20–1000°C.","PeriodicalId":14074,"journal":{"name":"International Journal of Inorganic Chemistry","volume":"62 1 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Polydentate Schiff Base Ligands and Their La(III) Complexes: Synthesis, Characterization, Antibacterial, Thermal, and Electrochemical Properties\",\"authors\":\"A. Şabik, M. Karabörk, G. Ceyhan, M. Tümer, M. Dığrak\",\"doi\":\"10.1155/2012/791219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We synthesized the Schiff base ligands H2L1–H2L4 and their La(III) complexes and characterized them by the analytical and spectroscopic methods. We investigated their electrochemical and antimicrobial activity properties. The electrochemical properties of the ligands H2L1–H2L4 and their La(III) complexes were studied at the different scan rates (100 and 200 mV), different pH ranges (pH=2−12), and in the different solvents. The electrooxidation of the Schiff base ligands involves a reversible transfer of two electrons and two protons in solutions of pH up to 5.5, in agreement with the one-step two-electron mechanism. In solutions of pH higher than 5.5, the process of electrooxidation reaction of the Schiff base ligands and their La(III) complexes follows an ECi mechanism. The antimicrobial activities of the ligands and their complexes were studied. The thermal properties of the metal complexes were studied under nitrogen atmosphere in the range of temperature 20–1000°C.\",\"PeriodicalId\":14074,\"journal\":{\"name\":\"International Journal of Inorganic Chemistry\",\"volume\":\"62 1 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Inorganic Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/791219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Inorganic Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/791219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polydentate Schiff Base Ligands and Their La(III) Complexes: Synthesis, Characterization, Antibacterial, Thermal, and Electrochemical Properties
We synthesized the Schiff base ligands H2L1–H2L4 and their La(III) complexes and characterized them by the analytical and spectroscopic methods. We investigated their electrochemical and antimicrobial activity properties. The electrochemical properties of the ligands H2L1–H2L4 and their La(III) complexes were studied at the different scan rates (100 and 200 mV), different pH ranges (pH=2−12), and in the different solvents. The electrooxidation of the Schiff base ligands involves a reversible transfer of two electrons and two protons in solutions of pH up to 5.5, in agreement with the one-step two-electron mechanism. In solutions of pH higher than 5.5, the process of electrooxidation reaction of the Schiff base ligands and their La(III) complexes follows an ECi mechanism. The antimicrobial activities of the ligands and their complexes were studied. The thermal properties of the metal complexes were studied under nitrogen atmosphere in the range of temperature 20–1000°C.