基于FKGRNet模型的滑坡遥感识别方法

Remote. Sens. Pub Date : 2023-07-05 DOI:10.3390/rs15133407
Bing Xu, Chunju Zhang, Wencong Liu, Jianwei Huang, Yujiao Su, Yucheng Yang, Weijie Jiang, Wenhao Sun
{"title":"基于FKGRNet模型的滑坡遥感识别方法","authors":"Bing Xu, Chunju Zhang, Wencong Liu, Jianwei Huang, Yujiao Su, Yucheng Yang, Weijie Jiang, Wenhao Sun","doi":"10.3390/rs15133407","DOIUrl":null,"url":null,"abstract":"Currently, researchers commonly use convolutional neural network (CNN) models for landslide remote sensing image recognition. However, with the increase in landslide monitoring data, the available multimodal landslide data contain rich feature information, and existing landslide recognition models have difficulty utilizing such data. A knowledge graph is a linguistic network knowledge base capable of storing and describing various entities and their relationships. A landslide knowledge graph is used to manage multimodal landslide data, and by integrating this graph into a landslide image recognition model, the given multimodal landslide data can be fully utilized for landslide identification. In this paper, we combine knowledge and models, introduce the use of landslide knowledge graphs in landslide identification, and propose a landslide identification method for remote sensing images that fuses knowledge graphs and ResNet (FKGRNet). We take the Loess Plateau of China as the study area and test the effect of the fusion model by comparing the baseline model, the fusion model and other deep learning models. The experimental results show that, first, with ResNet34 as the baseline model, the FKGRNet model achieves 95.08% accuracy in landslide recognition, which is better than that of the baseline model and other deep learning models. Second, the FKGRNet model with different network depths has better landslide recognition accuracy than its corresponding baseline model. Third, the FKGRNet model based on feature splicing outperforms the fused feature classifier in terms of both accuracy and F1-score on the landslide recognition task. Therefore, the FKGRNet model can make fuller use of landslide knowledge to accurately recognize landslides in remote sensing images.","PeriodicalId":20944,"journal":{"name":"Remote. Sens.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Landslide Identification Method Based on the FKGRNet Model for Remote Sensing Images\",\"authors\":\"Bing Xu, Chunju Zhang, Wencong Liu, Jianwei Huang, Yujiao Su, Yucheng Yang, Weijie Jiang, Wenhao Sun\",\"doi\":\"10.3390/rs15133407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, researchers commonly use convolutional neural network (CNN) models for landslide remote sensing image recognition. However, with the increase in landslide monitoring data, the available multimodal landslide data contain rich feature information, and existing landslide recognition models have difficulty utilizing such data. A knowledge graph is a linguistic network knowledge base capable of storing and describing various entities and their relationships. A landslide knowledge graph is used to manage multimodal landslide data, and by integrating this graph into a landslide image recognition model, the given multimodal landslide data can be fully utilized for landslide identification. In this paper, we combine knowledge and models, introduce the use of landslide knowledge graphs in landslide identification, and propose a landslide identification method for remote sensing images that fuses knowledge graphs and ResNet (FKGRNet). We take the Loess Plateau of China as the study area and test the effect of the fusion model by comparing the baseline model, the fusion model and other deep learning models. The experimental results show that, first, with ResNet34 as the baseline model, the FKGRNet model achieves 95.08% accuracy in landslide recognition, which is better than that of the baseline model and other deep learning models. Second, the FKGRNet model with different network depths has better landslide recognition accuracy than its corresponding baseline model. Third, the FKGRNet model based on feature splicing outperforms the fused feature classifier in terms of both accuracy and F1-score on the landslide recognition task. Therefore, the FKGRNet model can make fuller use of landslide knowledge to accurately recognize landslides in remote sensing images.\",\"PeriodicalId\":20944,\"journal\":{\"name\":\"Remote. Sens.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote. Sens.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/rs15133407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote. Sens.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/rs15133407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,研究人员普遍采用卷积神经网络(CNN)模型进行滑坡遥感图像识别。然而,随着滑坡监测数据的增加,现有的多模态滑坡数据包含了丰富的特征信息,现有的滑坡识别模型难以利用这些数据。知识图谱是一种语言网络知识库,能够存储和描述各种实体及其关系。利用滑坡知识图对多模态滑坡数据进行管理,将该知识图集成到滑坡图像识别模型中,可以充分利用给定的多模态滑坡数据进行滑坡识别。本文将知识与模型相结合,介绍了滑坡知识图在滑坡识别中的应用,提出了一种融合知识图与ResNet (FKGRNet)的遥感影像滑坡识别方法。我们以中国黄土高原为研究区,通过对比基线模型、融合模型和其他深度学习模型来检验融合模型的效果。实验结果表明,首先,以ResNet34为基线模型,FKGRNet模型在滑坡识别中准确率达到95.08%,优于基线模型和其他深度学习模型。其次,不同网络深度的FKGRNet模型比相应的基线模型具有更好的滑坡识别精度。第三,基于特征拼接的FKGRNet模型在滑坡识别任务上的准确率和f1分数均优于融合特征分类器。因此,FKGRNet模型可以更充分地利用滑坡知识,准确识别遥感影像中的滑坡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Landslide Identification Method Based on the FKGRNet Model for Remote Sensing Images
Currently, researchers commonly use convolutional neural network (CNN) models for landslide remote sensing image recognition. However, with the increase in landslide monitoring data, the available multimodal landslide data contain rich feature information, and existing landslide recognition models have difficulty utilizing such data. A knowledge graph is a linguistic network knowledge base capable of storing and describing various entities and their relationships. A landslide knowledge graph is used to manage multimodal landslide data, and by integrating this graph into a landslide image recognition model, the given multimodal landslide data can be fully utilized for landslide identification. In this paper, we combine knowledge and models, introduce the use of landslide knowledge graphs in landslide identification, and propose a landslide identification method for remote sensing images that fuses knowledge graphs and ResNet (FKGRNet). We take the Loess Plateau of China as the study area and test the effect of the fusion model by comparing the baseline model, the fusion model and other deep learning models. The experimental results show that, first, with ResNet34 as the baseline model, the FKGRNet model achieves 95.08% accuracy in landslide recognition, which is better than that of the baseline model and other deep learning models. Second, the FKGRNet model with different network depths has better landslide recognition accuracy than its corresponding baseline model. Third, the FKGRNet model based on feature splicing outperforms the fused feature classifier in terms of both accuracy and F1-score on the landslide recognition task. Therefore, the FKGRNet model can make fuller use of landslide knowledge to accurately recognize landslides in remote sensing images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信