基于趋势划分的时间序列降维方法研究

IF 1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY
Haining Yang, Xuedong Gao, Wei Cui
{"title":"基于趋势划分的时间序列降维方法研究","authors":"Haining Yang, Xuedong Gao, Wei Cui","doi":"10.17559/tv-20230224000379","DOIUrl":null,"url":null,"abstract":": The characteristics of high dimension, complexity and multi granularity of financial time series make it difficult to deal with effectively. In order to solve the problem that the commonly used dimensionality reduction methods cannot reduce the dimensionality of time series with different granularity at the same time, in this paper, a method for dimensionality reduction of time series based on trend division is proposed. This method extracts the extreme value points of time series, identifies the important points in time series quickly and accurately, and compresses them. Experimental results show that, compared with the discrete Fourier transform and wavelet transform, the proposed method can effectively process data of different granularity and different trends on the basis of fully preserving the original information of time series. Moreover, the time complexity is low, the operation is easy, and the proposed method can provide decision support for high-frequency stock trading at the actual level.","PeriodicalId":49443,"journal":{"name":"Tehnicki Vjesnik-Technical Gazette","volume":"59 2 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Research on Dimension Reduction Method of Time Series Based on Trend Division\",\"authors\":\"Haining Yang, Xuedong Gao, Wei Cui\",\"doi\":\"10.17559/tv-20230224000379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": The characteristics of high dimension, complexity and multi granularity of financial time series make it difficult to deal with effectively. In order to solve the problem that the commonly used dimensionality reduction methods cannot reduce the dimensionality of time series with different granularity at the same time, in this paper, a method for dimensionality reduction of time series based on trend division is proposed. This method extracts the extreme value points of time series, identifies the important points in time series quickly and accurately, and compresses them. Experimental results show that, compared with the discrete Fourier transform and wavelet transform, the proposed method can effectively process data of different granularity and different trends on the basis of fully preserving the original information of time series. Moreover, the time complexity is low, the operation is easy, and the proposed method can provide decision support for high-frequency stock trading at the actual level.\",\"PeriodicalId\":49443,\"journal\":{\"name\":\"Tehnicki Vjesnik-Technical Gazette\",\"volume\":\"59 2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tehnicki Vjesnik-Technical Gazette\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17559/tv-20230224000379\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tehnicki Vjesnik-Technical Gazette","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17559/tv-20230224000379","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金融时间序列具有高维、复杂和多粒度的特点,使其难以有效处理。为了解决常用降维方法不能同时对不同粒度的时间序列进行降维的问题,本文提出了一种基于趋势划分的时间序列降维方法。该方法提取时间序列的极值点,快速准确地识别时间序列中的重要点,并对其进行压缩。实验结果表明,与离散傅里叶变换和小波变换相比,该方法能在充分保留时间序列原始信息的基础上,有效地处理不同粒度、不同趋势的数据。此外,该方法时间复杂度低,操作简单,可以为实际层面的高频股票交易提供决策支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Research on Dimension Reduction Method of Time Series Based on Trend Division
: The characteristics of high dimension, complexity and multi granularity of financial time series make it difficult to deal with effectively. In order to solve the problem that the commonly used dimensionality reduction methods cannot reduce the dimensionality of time series with different granularity at the same time, in this paper, a method for dimensionality reduction of time series based on trend division is proposed. This method extracts the extreme value points of time series, identifies the important points in time series quickly and accurately, and compresses them. Experimental results show that, compared with the discrete Fourier transform and wavelet transform, the proposed method can effectively process data of different granularity and different trends on the basis of fully preserving the original information of time series. Moreover, the time complexity is low, the operation is easy, and the proposed method can provide decision support for high-frequency stock trading at the actual level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tehnicki Vjesnik-Technical Gazette
Tehnicki Vjesnik-Technical Gazette ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.90
自引率
11.10%
发文量
270
审稿时长
12.6 months
期刊介绍: The journal TEHNIČKI VJESNIK - TECHNICAL GAZETTE publishes scientific and professional papers in the area of technical sciences (mostly from mechanical, electrical and civil engineering, and also from their boundary areas). All articles have undergone peer review and upon acceptance are permanently free of all restrictions on access, for everyone to read and download. For all articles authors will be asked to pay a publication fee prior to the article appearing in the journal. However, this fee only to be paid after the article has been positively reviewed and accepted for publishing. All details can be seen at http://www.tehnicki-vjesnik.com/web/public/page First year of publication: 1994 Frequency (annually): 6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信