棉麻纤维增强复合筋的动力性能研究

Q4 Engineering
A. I. Rădoi, C. Miriţoiu
{"title":"棉麻纤维增强复合筋的动力性能研究","authors":"A. I. Rădoi, C. Miriţoiu","doi":"10.35219/AWET.2020.07","DOIUrl":null,"url":null,"abstract":"In this paper, the authors designed several green composites with natural reinforcements (hemp and cotton fibers) and the matrix is a synthetic resin (epoxy resin). On having produced the samples, the authors determined the dynamic mechanical characteristics. The dynamic parameters were determined from the bar free vibrations. The next experimental rig was used: the bars were clamped at one end and left free at the other end. At the free end, a Bruel&Kjaer accelerometer with 0.04 pC/ms-2 sensitivity was placed, in order to record the beam dynamic response. A force was applied at the free end to bend the beams, and after bending, the force was cancelled and the beams were left to vibrate freely. The accelerometer was connected to a Nexus signal conditioner, and the signal conditioner was connected to a SPIDER 8 data acquisition system made by Hottinger Baldwin Messtec. The acquisition system was connected to a notebook and the experimental parameters were obtained through the CATMAN EASY software. From the free vibrations recording, the next mechanical parameters were determined: the eigenfrequency of the first eigenmode, the damping factors per mass unit and per unit length, the loss factor and the dynamic Young modulus and stiffness. From the results obtained, it can be concluded that the materials with epoxy resin reinforced with hemp have better vibration damping properties as compared to the composites made from epoxy reinforced with cotton fibers.","PeriodicalId":39009,"journal":{"name":"Annals of Dunarea de Jos University of Galati, Fascicle XII, Welding Equipment and Technology","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"About the Dynamic Behaviour of Composite Bars Reinforced with Cotton or Hemp Fibers\",\"authors\":\"A. I. Rădoi, C. Miriţoiu\",\"doi\":\"10.35219/AWET.2020.07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors designed several green composites with natural reinforcements (hemp and cotton fibers) and the matrix is a synthetic resin (epoxy resin). On having produced the samples, the authors determined the dynamic mechanical characteristics. The dynamic parameters were determined from the bar free vibrations. The next experimental rig was used: the bars were clamped at one end and left free at the other end. At the free end, a Bruel&Kjaer accelerometer with 0.04 pC/ms-2 sensitivity was placed, in order to record the beam dynamic response. A force was applied at the free end to bend the beams, and after bending, the force was cancelled and the beams were left to vibrate freely. The accelerometer was connected to a Nexus signal conditioner, and the signal conditioner was connected to a SPIDER 8 data acquisition system made by Hottinger Baldwin Messtec. The acquisition system was connected to a notebook and the experimental parameters were obtained through the CATMAN EASY software. From the free vibrations recording, the next mechanical parameters were determined: the eigenfrequency of the first eigenmode, the damping factors per mass unit and per unit length, the loss factor and the dynamic Young modulus and stiffness. From the results obtained, it can be concluded that the materials with epoxy resin reinforced with hemp have better vibration damping properties as compared to the composites made from epoxy reinforced with cotton fibers.\",\"PeriodicalId\":39009,\"journal\":{\"name\":\"Annals of Dunarea de Jos University of Galati, Fascicle XII, Welding Equipment and Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Dunarea de Jos University of Galati, Fascicle XII, Welding Equipment and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35219/AWET.2020.07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Dunarea de Jos University of Galati, Fascicle XII, Welding Equipment and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35219/AWET.2020.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文设计了几种以天然增强剂(麻纤维和棉纤维)为基体,以合成树脂(环氧树脂)为基体的绿色复合材料。在制作样品后,作者确定了动态力学特性。根据杆的自由振动确定了动力参数。下一个实验装置被使用:铁棒的一端被夹住,另一端被松开。在自由端放置了灵敏度为0.04 pC/ms-2的Bruel&Kjaer加速度计,以记录光束的动态响应。在梁的自由端施加一个力使梁弯曲,弯曲后,力被取消,使梁自由振动。加速度计连接到Nexus信号调节器,信号调节器连接到Hottinger Baldwin Messtec公司的SPIDER 8数据采集系统。采集系统与笔记本相连,通过CATMAN EASY软件获取实验参数。根据自由振动记录,确定了下一个力学参数:第一特征模态的本征频率,每质量单位和每单位长度的阻尼因子,损耗因子以及动态杨氏模量和刚度。结果表明,与棉纤维增强环氧树脂复合材料相比,大麻增强环氧树脂复合材料具有更好的减振性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
About the Dynamic Behaviour of Composite Bars Reinforced with Cotton or Hemp Fibers
In this paper, the authors designed several green composites with natural reinforcements (hemp and cotton fibers) and the matrix is a synthetic resin (epoxy resin). On having produced the samples, the authors determined the dynamic mechanical characteristics. The dynamic parameters were determined from the bar free vibrations. The next experimental rig was used: the bars were clamped at one end and left free at the other end. At the free end, a Bruel&Kjaer accelerometer with 0.04 pC/ms-2 sensitivity was placed, in order to record the beam dynamic response. A force was applied at the free end to bend the beams, and after bending, the force was cancelled and the beams were left to vibrate freely. The accelerometer was connected to a Nexus signal conditioner, and the signal conditioner was connected to a SPIDER 8 data acquisition system made by Hottinger Baldwin Messtec. The acquisition system was connected to a notebook and the experimental parameters were obtained through the CATMAN EASY software. From the free vibrations recording, the next mechanical parameters were determined: the eigenfrequency of the first eigenmode, the damping factors per mass unit and per unit length, the loss factor and the dynamic Young modulus and stiffness. From the results obtained, it can be concluded that the materials with epoxy resin reinforced with hemp have better vibration damping properties as compared to the composites made from epoxy reinforced with cotton fibers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
1
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信