{"title":"使用机器学习的图像分析:胎儿超声图像的解剖标志检测","authors":"B. Rahmatullah, A. Papageorghiou, J. A. Noble","doi":"10.1109/COMPSAC.2012.52","DOIUrl":null,"url":null,"abstract":"Accurate and robust image analysis software is crucial for assessing the quality of ultrasound images of fetal biometry. In this work, we present the result of our automated image analysis method based on a machine learning algorithm in detecting important anatomical landmarks employed in manual scoring of ultrasound images of the fetal abdomen. Experimental results on 2384 images are promising and the clinical validation using 300 images demonstrates a high level agreement between the automated method and experts.","PeriodicalId":74502,"journal":{"name":"Proceedings : Annual International Computer Software and Applications Conference. COMPSAC","volume":"13 1","pages":"354-355"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Image Analysis Using Machine Learning: Anatomical Landmarks Detection in Fetal Ultrasound Images\",\"authors\":\"B. Rahmatullah, A. Papageorghiou, J. A. Noble\",\"doi\":\"10.1109/COMPSAC.2012.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and robust image analysis software is crucial for assessing the quality of ultrasound images of fetal biometry. In this work, we present the result of our automated image analysis method based on a machine learning algorithm in detecting important anatomical landmarks employed in manual scoring of ultrasound images of the fetal abdomen. Experimental results on 2384 images are promising and the clinical validation using 300 images demonstrates a high level agreement between the automated method and experts.\",\"PeriodicalId\":74502,\"journal\":{\"name\":\"Proceedings : Annual International Computer Software and Applications Conference. COMPSAC\",\"volume\":\"13 1\",\"pages\":\"354-355\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings : Annual International Computer Software and Applications Conference. COMPSAC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMPSAC.2012.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : Annual International Computer Software and Applications Conference. COMPSAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC.2012.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Image Analysis Using Machine Learning: Anatomical Landmarks Detection in Fetal Ultrasound Images
Accurate and robust image analysis software is crucial for assessing the quality of ultrasound images of fetal biometry. In this work, we present the result of our automated image analysis method based on a machine learning algorithm in detecting important anatomical landmarks employed in manual scoring of ultrasound images of the fetal abdomen. Experimental results on 2384 images are promising and the clinical validation using 300 images demonstrates a high level agreement between the automated method and experts.