板式换热器内HFC-134a的蒸发换热及压降

B. Ouazia
{"title":"板式换热器内HFC-134a的蒸发换热及压降","authors":"B. Ouazia","doi":"10.1115/imece2001/pid-25613","DOIUrl":null,"url":null,"abstract":"\n An experimental investigation was carried out to provide data on heat transfer coefficient and pressure drop for upward flow of refrigerant 134a in a typical plate heat exchanger. Upflow boiling of R-134a in one channel receives heat from the hot downflow of water in the two adjacent channels. Measurements were conducted on three sets of plates with chevron angles of 0°, 30°, and 60°, and the effects of mean vapor quality, mass flux, and heat flux on the evaporation heat transfer and pressure drop were explored. It was found that the channels with small chevron angle have higher heat transfer than channels with large chevron angle, for both subcooling and vapor quality inlet conditions. It was clear that the heat transfer coefficients were not sensitive to the heat flux but were dependent on the flow conditions (mass velocity and vapour quality). Based on the experimental data, empirical correlations for the evaporation heat transfer enhancement factor and the two-phase pressure drop multipliers were proposed.","PeriodicalId":9805,"journal":{"name":"Chemical and Process Industries","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Evaporation Heat Transfer and Pressure Drop of HFC-134a Inside a Plate Heat Exchanger\",\"authors\":\"B. Ouazia\",\"doi\":\"10.1115/imece2001/pid-25613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An experimental investigation was carried out to provide data on heat transfer coefficient and pressure drop for upward flow of refrigerant 134a in a typical plate heat exchanger. Upflow boiling of R-134a in one channel receives heat from the hot downflow of water in the two adjacent channels. Measurements were conducted on three sets of plates with chevron angles of 0°, 30°, and 60°, and the effects of mean vapor quality, mass flux, and heat flux on the evaporation heat transfer and pressure drop were explored. It was found that the channels with small chevron angle have higher heat transfer than channels with large chevron angle, for both subcooling and vapor quality inlet conditions. It was clear that the heat transfer coefficients were not sensitive to the heat flux but were dependent on the flow conditions (mass velocity and vapour quality). Based on the experimental data, empirical correlations for the evaporation heat transfer enhancement factor and the two-phase pressure drop multipliers were proposed.\",\"PeriodicalId\":9805,\"journal\":{\"name\":\"Chemical and Process Industries\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Process Industries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/pid-25613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Process Industries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/pid-25613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

对典型板式换热器中制冷剂134a向上流动的传热系数和压降进行了实验研究。一个通道中R-134a的上行沸腾接收相邻两个通道中热水的下行热量。在v形角为0°、30°和60°的三组板上进行了测量,探讨了平均蒸汽质量、质量通量和热流密度对蒸发换热和压降的影响。结果表明,无论是过冷还是汽质入口,小v形角通道的换热性能都高于大v形角通道。显然,传热系数对热流密度不敏感,而取决于流动条件(质量速度和蒸气质量)。基于实验数据,提出了蒸发换热强化系数与两相压降乘数的经验关系式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaporation Heat Transfer and Pressure Drop of HFC-134a Inside a Plate Heat Exchanger
An experimental investigation was carried out to provide data on heat transfer coefficient and pressure drop for upward flow of refrigerant 134a in a typical plate heat exchanger. Upflow boiling of R-134a in one channel receives heat from the hot downflow of water in the two adjacent channels. Measurements were conducted on three sets of plates with chevron angles of 0°, 30°, and 60°, and the effects of mean vapor quality, mass flux, and heat flux on the evaporation heat transfer and pressure drop were explored. It was found that the channels with small chevron angle have higher heat transfer than channels with large chevron angle, for both subcooling and vapor quality inlet conditions. It was clear that the heat transfer coefficients were not sensitive to the heat flux but were dependent on the flow conditions (mass velocity and vapour quality). Based on the experimental data, empirical correlations for the evaporation heat transfer enhancement factor and the two-phase pressure drop multipliers were proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信