非线性Cosserat介质动力学问题的变分公式

Q3 Mathematics
E.V. Zdanchuk, V.V. Kuroyedov, V.V. Lalin, I.I. Lalina, E.A. Provatorova
{"title":"非线性Cosserat介质动力学问题的变分公式","authors":"E.V. Zdanchuk,&nbsp;V.V. Kuroyedov,&nbsp;V.V. Lalin,&nbsp;I.I. Lalina,&nbsp;E.A. Provatorova","doi":"10.1016/j.jappmathmech.2017.07.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>A variational formulation of </span>dynamic problems<span><span> for a geometrically and physically nonlinear elastic Cosserat medium is obtained in the form of the problem of finding the stationary point of Hamilton's functional. Variations of the strain and rotation tensors and the linear and angular velocity<span> vectors are calculated. The equivalence of the Euler equations with </span></span>natural boundary conditions<span> to the equations of motion with the original boundary conditions in the case of potential force and torque loads is proved. A nontrivial potentiality condition of the torque (bulk and surface) loads is obtained.</span></span></p></div>","PeriodicalId":49686,"journal":{"name":"Pmm Journal of Applied Mathematics and Mechanics","volume":"81 1","pages":"Pages 66-70"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jappmathmech.2017.07.007","citationCount":"2","resultStr":"{\"title\":\"Variational formulation of dynamic problems for a nonlinear Cosserat medium\",\"authors\":\"E.V. Zdanchuk,&nbsp;V.V. Kuroyedov,&nbsp;V.V. Lalin,&nbsp;I.I. Lalina,&nbsp;E.A. Provatorova\",\"doi\":\"10.1016/j.jappmathmech.2017.07.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>A variational formulation of </span>dynamic problems<span><span> for a geometrically and physically nonlinear elastic Cosserat medium is obtained in the form of the problem of finding the stationary point of Hamilton's functional. Variations of the strain and rotation tensors and the linear and angular velocity<span> vectors are calculated. The equivalence of the Euler equations with </span></span>natural boundary conditions<span> to the equations of motion with the original boundary conditions in the case of potential force and torque loads is proved. A nontrivial potentiality condition of the torque (bulk and surface) loads is obtained.</span></span></p></div>\",\"PeriodicalId\":49686,\"journal\":{\"name\":\"Pmm Journal of Applied Mathematics and Mechanics\",\"volume\":\"81 1\",\"pages\":\"Pages 66-70\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jappmathmech.2017.07.007\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pmm Journal of Applied Mathematics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021892817300436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pmm Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021892817300436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

给出了几何和物理非线性弹性Cosserat介质动力学问题的变分公式,其形式为Hamilton泛函的定常点求问题。计算了应变和旋转张量以及线速度和角速度矢量的变化。证明了具有自然边界条件的欧拉方程与具有原始边界条件的运动方程在势能和扭矩载荷情况下的等价性。得到了转矩(体载荷和面载荷)的非平凡势性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational formulation of dynamic problems for a nonlinear Cosserat medium

A variational formulation of dynamic problems for a geometrically and physically nonlinear elastic Cosserat medium is obtained in the form of the problem of finding the stationary point of Hamilton's functional. Variations of the strain and rotation tensors and the linear and angular velocity vectors are calculated. The equivalence of the Euler equations with natural boundary conditions to the equations of motion with the original boundary conditions in the case of potential force and torque loads is proved. A nontrivial potentiality condition of the torque (bulk and surface) loads is obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal is a cover to cover translation of the Russian journal Prikladnaya Matematika i Mekhanika, published by the Russian Academy of Sciences and reflecting all the major achievements of the Russian School of Mechanics.The journal is concerned with high-level mathematical investigations of modern physical and mechanical problems and reports current progress in this field. Special emphasis is placed on aeronautics and space science and such subjects as continuum mechanics, theory of elasticity, and mathematics of space flight guidance and control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信