基于ga的磷酸铁锂电池电化学阻抗谱特征选择

Q3 Engineering
C. Bourelly, M. Vitelli, F. Milano, M. Molinara, F. Fontanella, L. Ferrigno
{"title":"基于ga的磷酸铁锂电池电化学阻抗谱特征选择","authors":"C. Bourelly, M. Vitelli, F. Milano, M. Molinara, F. Fontanella, L. Ferrigno","doi":"10.1109/ESARS-ITEC57127.2023.10114858","DOIUrl":null,"url":null,"abstract":"Online and real-time estimation of the State of Charge (SoC) of batteries is an issue that affects several applications where energy storage systems are used. Among the most effective techniques for estimating the SoC, we find those based on Electrochemical Impedance Spectroscopy (EIS). One of the problems that afflict the EIS is that a single frequency sweep can last too long compared to the need to carry out the evaluation of the SoC online and real-time. This work aims to minimize the time required to perform EIS through a feature selection technique based on Genetic Algorithms. Specifically, an experimental campaign was conducted on 5 different Lithium Iron Phosphate batteries to create a dataset, and a feature selection evaluation strategy was implemented. The obtained results confirmed that it is possible to reduce the time required to perform EIS while maintaining good performance in SoC estimation.","PeriodicalId":38493,"journal":{"name":"AUS","volume":"46 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GA-Based Features Selection for Electro-chemical Impedance Spectroscopy on Lithium Iron Phosphate Batteries\",\"authors\":\"C. Bourelly, M. Vitelli, F. Milano, M. Molinara, F. Fontanella, L. Ferrigno\",\"doi\":\"10.1109/ESARS-ITEC57127.2023.10114858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online and real-time estimation of the State of Charge (SoC) of batteries is an issue that affects several applications where energy storage systems are used. Among the most effective techniques for estimating the SoC, we find those based on Electrochemical Impedance Spectroscopy (EIS). One of the problems that afflict the EIS is that a single frequency sweep can last too long compared to the need to carry out the evaluation of the SoC online and real-time. This work aims to minimize the time required to perform EIS through a feature selection technique based on Genetic Algorithms. Specifically, an experimental campaign was conducted on 5 different Lithium Iron Phosphate batteries to create a dataset, and a feature selection evaluation strategy was implemented. The obtained results confirmed that it is possible to reduce the time required to perform EIS while maintaining good performance in SoC estimation.\",\"PeriodicalId\":38493,\"journal\":{\"name\":\"AUS\",\"volume\":\"46 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESARS-ITEC57127.2023.10114858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESARS-ITEC57127.2023.10114858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2

摘要

在线和实时评估电池的充电状态(SoC)是一个影响储能系统应用的问题。其中最有效的估算方法是电化学阻抗谱(EIS)。困扰EIS的一个问题是,与在线和实时评估SoC的需求相比,单次频率扫描可能持续太长时间。本工作旨在通过基于遗传算法的特征选择技术,最大限度地减少执行EIS所需的时间。具体而言,对5种不同的磷酸铁锂电池进行了实验,建立了数据集,并实施了特征选择评估策略。所获得的结果证实,在SoC估计中保持良好性能的同时,减少执行EIS所需的时间是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GA-Based Features Selection for Electro-chemical Impedance Spectroscopy on Lithium Iron Phosphate Batteries
Online and real-time estimation of the State of Charge (SoC) of batteries is an issue that affects several applications where energy storage systems are used. Among the most effective techniques for estimating the SoC, we find those based on Electrochemical Impedance Spectroscopy (EIS). One of the problems that afflict the EIS is that a single frequency sweep can last too long compared to the need to carry out the evaluation of the SoC online and real-time. This work aims to minimize the time required to perform EIS through a feature selection technique based on Genetic Algorithms. Specifically, an experimental campaign was conducted on 5 different Lithium Iron Phosphate batteries to create a dataset, and a feature selection evaluation strategy was implemented. The obtained results confirmed that it is possible to reduce the time required to perform EIS while maintaining good performance in SoC estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AUS
AUS Engineering-Architecture
CiteScore
0.40
自引率
0.00%
发文量
14
期刊介绍: Revista AUS es una publicación académica de corriente principal perteneciente a la comunidad de investigadores de la arquitectura y el urbanismo sostenibles, en el ámbito de las culturas locales y globales. La revista es semestral, cuenta con comité editorial y sus artículos son revisados por pares en el sistema de doble ciego. Periodicidad semestral.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信