双向列联表的完整梯度法

Y. Tachibana, Y. Goto, Tamio Koyama, N. Takayama
{"title":"双向列联表的完整梯度法","authors":"Y. Tachibana, Y. Goto, Tamio Koyama, N. Takayama","doi":"10.2140/astat.2020.11.125","DOIUrl":null,"url":null,"abstract":"The holonomic gradient method gives an algorithm to efficiently and accurately evaluate normalizing constants and their derivatives. It utilizes holonomic differential equations or holonomic difference equations. Y.Goto and K.Matsumoto gave a system of difference equations for the hypergeometric system of type (k, n). We apply their system to evaluate the normalizing constant and its derivatives of the conditional Poisson or multinomial distribution on two way contingency tables. The modular method in computer algebra has been used for an efficient and exact evaluation. We will also discuss on complexities of these algorithms and their implementation.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Holonomic gradient method for two-way contingency tables\",\"authors\":\"Y. Tachibana, Y. Goto, Tamio Koyama, N. Takayama\",\"doi\":\"10.2140/astat.2020.11.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The holonomic gradient method gives an algorithm to efficiently and accurately evaluate normalizing constants and their derivatives. It utilizes holonomic differential equations or holonomic difference equations. Y.Goto and K.Matsumoto gave a system of difference equations for the hypergeometric system of type (k, n). We apply their system to evaluate the normalizing constant and its derivatives of the conditional Poisson or multinomial distribution on two way contingency tables. The modular method in computer algebra has been used for an efficient and exact evaluation. We will also discuss on complexities of these algorithms and their implementation.\",\"PeriodicalId\":41066,\"journal\":{\"name\":\"Journal of Algebraic Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebraic Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/astat.2020.11.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2020.11.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

完整梯度法给出了一种高效准确地求正则化常数及其导数的算法。它利用完整微分方程或完整差分方程。Y.Goto和k . matsumoto给出了(k, n)型超几何系统的一组差分方程。我们应用他们的系统计算了两路列联表上条件泊松分布或多项分布的归一化常数及其导数。计算机代数中的模块化方法已被用于高效和精确的求值。我们还将讨论这些算法的复杂性及其实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Holonomic gradient method for two-way contingency tables
The holonomic gradient method gives an algorithm to efficiently and accurately evaluate normalizing constants and their derivatives. It utilizes holonomic differential equations or holonomic difference equations. Y.Goto and K.Matsumoto gave a system of difference equations for the hypergeometric system of type (k, n). We apply their system to evaluate the normalizing constant and its derivatives of the conditional Poisson or multinomial distribution on two way contingency tables. The modular method in computer algebra has been used for an efficient and exact evaluation. We will also discuss on complexities of these algorithms and their implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信