用磁场监测技术校正磁共振测温中的B0漂移效应

IF 0.9 4区 医学 Q4 CHEMISTRY, PHYSICAL
Daniel Hernandez, Ki Soo Kim, Eric Michel, Soo Yeol Lee
{"title":"用磁场监测技术校正磁共振测温中的B0漂移效应","authors":"Daniel Hernandez,&nbsp;Ki Soo Kim,&nbsp;Eric Michel,&nbsp;Soo Yeol Lee","doi":"10.1002/cmr.b.21324","DOIUrl":null,"url":null,"abstract":"<p>When magnetic resonance (MR) thermometry is performed for temperature monitoring during time-consuming thermal therapy like hyperthermia, tiny main magnetic field (<i>B</i><sub>0</sub>) drifts may cause significant errors in temperature readings inside the human subject. We propose a correction method of <i>B</i><sub>0</sub> drift effects in MR thermometry, which is based on temperature-dependent proton resonance frequency shift (PRFS) of water molecules. We placed magnetic field monitoring (MFM) probes around the subject and we read the center frequency of MFM signals. By interpolating the center frequencies of MFM signals on the imaging slice, we computed phase correction maps for MR thermometry. We intermittently acquired MFM signals with performing MR thermometry at 3 Tesla during radiofrequency (RF) heating of a tissue-mimicking phantom. With the <i>B</i><sub>0</sub> drift effect correction, the temperature readings of MR thermometry maps became similar to the temperature readings of an optic fiber temperature sensor embedded at the center of the phantom. We believe the proposed correction method can be used for MRI-guided thermal therapy in which precise temperature monitoring is critical.</p>","PeriodicalId":50623,"journal":{"name":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","volume":"46B 2","pages":"81-89"},"PeriodicalIF":0.9000,"publicationDate":"2016-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cmr.b.21324","citationCount":"8","resultStr":"{\"title\":\"Correction of B0 Drift Effects in Magnetic Resonance Thermometry using Magnetic Field Monitoring Technique\",\"authors\":\"Daniel Hernandez,&nbsp;Ki Soo Kim,&nbsp;Eric Michel,&nbsp;Soo Yeol Lee\",\"doi\":\"10.1002/cmr.b.21324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>When magnetic resonance (MR) thermometry is performed for temperature monitoring during time-consuming thermal therapy like hyperthermia, tiny main magnetic field (<i>B</i><sub>0</sub>) drifts may cause significant errors in temperature readings inside the human subject. We propose a correction method of <i>B</i><sub>0</sub> drift effects in MR thermometry, which is based on temperature-dependent proton resonance frequency shift (PRFS) of water molecules. We placed magnetic field monitoring (MFM) probes around the subject and we read the center frequency of MFM signals. By interpolating the center frequencies of MFM signals on the imaging slice, we computed phase correction maps for MR thermometry. We intermittently acquired MFM signals with performing MR thermometry at 3 Tesla during radiofrequency (RF) heating of a tissue-mimicking phantom. With the <i>B</i><sub>0</sub> drift effect correction, the temperature readings of MR thermometry maps became similar to the temperature readings of an optic fiber temperature sensor embedded at the center of the phantom. We believe the proposed correction method can be used for MRI-guided thermal therapy in which precise temperature monitoring is critical.</p>\",\"PeriodicalId\":50623,\"journal\":{\"name\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"volume\":\"46B 2\",\"pages\":\"81-89\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cmr.b.21324\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21324\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part B-Magnetic Resonance Engineering","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cmr.b.21324","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 8

摘要

当在耗时的热疗(如热疗)期间进行磁共振(MR)测温时,微小的主磁场(B0)漂移可能会导致人体受试者体内温度读数出现重大误差。提出了一种基于水分子温度相关质子共振频移(PRFS)的磁流变测温中B0漂移效应的校正方法。我们在受试者周围放置磁场监测探头,读取磁场监测信号的中心频率。通过在成像切片上插值MFM信号的中心频率,我们计算了磁流变测温的相位校正图。我们在组织模拟模体的射频(RF)加热过程中,以3特斯拉的频率进行MR测温,间歇性地获取MFM信号。经过B0漂移效应校正后,MR测温图的温度读数与嵌入在模体中心的光纤温度传感器的温度读数相似。我们相信所提出的校正方法可以用于mri引导的热治疗,其中精确的温度监测是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correction of B0 Drift Effects in Magnetic Resonance Thermometry using Magnetic Field Monitoring Technique

When magnetic resonance (MR) thermometry is performed for temperature monitoring during time-consuming thermal therapy like hyperthermia, tiny main magnetic field (B0) drifts may cause significant errors in temperature readings inside the human subject. We propose a correction method of B0 drift effects in MR thermometry, which is based on temperature-dependent proton resonance frequency shift (PRFS) of water molecules. We placed magnetic field monitoring (MFM) probes around the subject and we read the center frequency of MFM signals. By interpolating the center frequencies of MFM signals on the imaging slice, we computed phase correction maps for MR thermometry. We intermittently acquired MFM signals with performing MR thermometry at 3 Tesla during radiofrequency (RF) heating of a tissue-mimicking phantom. With the B0 drift effect correction, the temperature readings of MR thermometry maps became similar to the temperature readings of an optic fiber temperature sensor embedded at the center of the phantom. We believe the proposed correction method can be used for MRI-guided thermal therapy in which precise temperature monitoring is critical.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
3
审稿时长
>12 weeks
期刊介绍: Concepts in Magnetic Resonance Part B brings together engineers and physicists involved in the design and development of hardware and software employed in magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods. Contributors come from both academia and industry, to report the latest advancements in the development of instrumentation and computer programming to underpin medical, non-medical, and analytical magnetic resonance techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信