用Ricci流正则化定义C0度量的点态下标量曲率界

Paula Burkhardt-Guim
{"title":"用Ricci流正则化定义C0度量的点态下标量曲率界","authors":"Paula Burkhardt-Guim","doi":"10.3842/sigma.2020.128","DOIUrl":null,"url":null,"abstract":"We survey some recent work using Ricci flow to create a class of local definitions of weak lower scalar curvature bounds that is well defined for $C^0$ metrics. We discuss several properties of these definitions and explain some applications of this approach to questions regarding uniform convergence of metrics with scalar curvature bounded below. Finally, we consider the relationship between this approach and some other generalized notions of lower scalar curvature bounds.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Defining Pointwise Lower Scalar Curvature Bounds for C0 Metrics with Regularization by Ricci Flow\",\"authors\":\"Paula Burkhardt-Guim\",\"doi\":\"10.3842/sigma.2020.128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We survey some recent work using Ricci flow to create a class of local definitions of weak lower scalar curvature bounds that is well defined for $C^0$ metrics. We discuss several properties of these definitions and explain some applications of this approach to questions regarding uniform convergence of metrics with scalar curvature bounded below. Finally, we consider the relationship between this approach and some other generalized notions of lower scalar curvature bounds.\",\"PeriodicalId\":8430,\"journal\":{\"name\":\"arXiv: Differential Geometry\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3842/sigma.2020.128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/sigma.2020.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们回顾了最近使用Ricci流来创建一类弱下标量曲率界的局部定义的一些工作,这些定义对于C^0$度量是很好的定义。我们讨论了这些定义的几个性质,并解释了这种方法在以下有界的标量曲率度量一致收敛问题上的一些应用。最后,我们考虑了该方法与其他广义下标量曲率界的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Defining Pointwise Lower Scalar Curvature Bounds for C0 Metrics with Regularization by Ricci Flow
We survey some recent work using Ricci flow to create a class of local definitions of weak lower scalar curvature bounds that is well defined for $C^0$ metrics. We discuss several properties of these definitions and explain some applications of this approach to questions regarding uniform convergence of metrics with scalar curvature bounded below. Finally, we consider the relationship between this approach and some other generalized notions of lower scalar curvature bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信