{"title":"高阶Skolem悖论与数学实践:注","authors":"Davood Hosseini, Mansooreh Kimiagari","doi":"10.2478/disp-2022-0003","DOIUrl":null,"url":null,"abstract":"Abstract We will formulate some analogous higher-order versions of Skolem’s paradox and assess the generalizability of two solutions for Skolem’s paradox to these paradoxes: the textbook approach and that of Bays (2000). We argue that the textbook approach to handle Skolem’s paradox cannot be generalized to solve the parallel higher-order paradoxes, unless it is augmented by the claim that there is no unique language within which the practice of mathematics can be formalized. Then, we argue that Bays’ solution to the original Skolem’s paradox, unlike the textbook solution, can be generalized to solve the higher-order paradoxes without any implication about the possibility or order of a language in which mathematical practice is to be formalized.","PeriodicalId":52369,"journal":{"name":"Disputatio (Spain)","volume":"4 1","pages":"41 - 49"},"PeriodicalIF":0.1000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Higher-Order Skolem’s Paradoxes and the Practice of Mathematics: a Note\",\"authors\":\"Davood Hosseini, Mansooreh Kimiagari\",\"doi\":\"10.2478/disp-2022-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We will formulate some analogous higher-order versions of Skolem’s paradox and assess the generalizability of two solutions for Skolem’s paradox to these paradoxes: the textbook approach and that of Bays (2000). We argue that the textbook approach to handle Skolem’s paradox cannot be generalized to solve the parallel higher-order paradoxes, unless it is augmented by the claim that there is no unique language within which the practice of mathematics can be formalized. Then, we argue that Bays’ solution to the original Skolem’s paradox, unlike the textbook solution, can be generalized to solve the higher-order paradoxes without any implication about the possibility or order of a language in which mathematical practice is to be formalized.\",\"PeriodicalId\":52369,\"journal\":{\"name\":\"Disputatio (Spain)\",\"volume\":\"4 1\",\"pages\":\"41 - 49\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disputatio (Spain)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/disp-2022-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disputatio (Spain)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/disp-2022-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
Higher-Order Skolem’s Paradoxes and the Practice of Mathematics: a Note
Abstract We will formulate some analogous higher-order versions of Skolem’s paradox and assess the generalizability of two solutions for Skolem’s paradox to these paradoxes: the textbook approach and that of Bays (2000). We argue that the textbook approach to handle Skolem’s paradox cannot be generalized to solve the parallel higher-order paradoxes, unless it is augmented by the claim that there is no unique language within which the practice of mathematics can be formalized. Then, we argue that Bays’ solution to the original Skolem’s paradox, unlike the textbook solution, can be generalized to solve the higher-order paradoxes without any implication about the possibility or order of a language in which mathematical practice is to be formalized.