Sebastian Kruse, David Hahn, Marius Walter, Felix Naumann
{"title":"Metacrate:组织和分析数以百万计的数据配置文件","authors":"Sebastian Kruse, David Hahn, Marius Walter, Felix Naumann","doi":"10.1145/3132847.3133180","DOIUrl":null,"url":null,"abstract":"Databases are one of the great success stories in IT. However, they have been continuously increasing in complexity, hampering operation, maintenance, and upgrades. To face this complexity, sophisticated methods for schema summarization, data cleaning, information integration, and many more have been devised that usually rely on data profiles, such as data statistics, signatures, and integrity constraints. Such data profiles are often extracted by automatic algorithms, which entails various problems: The profiles can be unfiltered and huge in volume; different profile types require different complex data structures; and the various profile types are not integrated with each other. We introduce Metacrate, a system to store, organize, and analyze data profiles of relational databases, thereby following the proven design of databases. In particular, we (i) propose a logical and a physical data model to store all kinds of data profiles in a scalable fashion; (ii) describe an analytics layer to query, integrate, and analyze the profiles efficiently; and (iii) implement on top a library of established algorithms to serve use cases, such as schema discovery, database refactoring, and data cleaning.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Metacrate: Organize and Analyze Millions of Data Profiles\",\"authors\":\"Sebastian Kruse, David Hahn, Marius Walter, Felix Naumann\",\"doi\":\"10.1145/3132847.3133180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Databases are one of the great success stories in IT. However, they have been continuously increasing in complexity, hampering operation, maintenance, and upgrades. To face this complexity, sophisticated methods for schema summarization, data cleaning, information integration, and many more have been devised that usually rely on data profiles, such as data statistics, signatures, and integrity constraints. Such data profiles are often extracted by automatic algorithms, which entails various problems: The profiles can be unfiltered and huge in volume; different profile types require different complex data structures; and the various profile types are not integrated with each other. We introduce Metacrate, a system to store, organize, and analyze data profiles of relational databases, thereby following the proven design of databases. In particular, we (i) propose a logical and a physical data model to store all kinds of data profiles in a scalable fashion; (ii) describe an analytics layer to query, integrate, and analyze the profiles efficiently; and (iii) implement on top a library of established algorithms to serve use cases, such as schema discovery, database refactoring, and data cleaning.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3133180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3133180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Metacrate: Organize and Analyze Millions of Data Profiles
Databases are one of the great success stories in IT. However, they have been continuously increasing in complexity, hampering operation, maintenance, and upgrades. To face this complexity, sophisticated methods for schema summarization, data cleaning, information integration, and many more have been devised that usually rely on data profiles, such as data statistics, signatures, and integrity constraints. Such data profiles are often extracted by automatic algorithms, which entails various problems: The profiles can be unfiltered and huge in volume; different profile types require different complex data structures; and the various profile types are not integrated with each other. We introduce Metacrate, a system to store, organize, and analyze data profiles of relational databases, thereby following the proven design of databases. In particular, we (i) propose a logical and a physical data model to store all kinds of data profiles in a scalable fashion; (ii) describe an analytics layer to query, integrate, and analyze the profiles efficiently; and (iii) implement on top a library of established algorithms to serve use cases, such as schema discovery, database refactoring, and data cleaning.