极大似然估计的不变量理论和缩放算法

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Carlos Am'endola, Kathlén Kohn, Philipp Reichenbach, A. Seigal
{"title":"极大似然估计的不变量理论和缩放算法","authors":"Carlos Am'endola, Kathlén Kohn, Philipp Reichenbach, A. Seigal","doi":"10.1137/20M1328932","DOIUrl":null,"url":null,"abstract":"We show that maximum likelihood estimation in statistics is equivalent to finding the capacity in invariant theory, in two statistical settings: log-linear models and Gaussian transformation families.The former includes the classical independence model while the latter includes matrix normal models and Gaussian graphical models given by transitive directed acyclic graphs. We use stability under group actions to characterize boundedness of the likelihood, and existence and uniqueness of the maximum likelihood estimate. Our approach reveals promising consequences of the interplay between invariant theory and statistics. In particular, existing scaling algorithms from statistics can be used in invariant theory, and vice versa.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Invariant Theory and Scaling Algorithms for Maximum Likelihood Estimation\",\"authors\":\"Carlos Am'endola, Kathlén Kohn, Philipp Reichenbach, A. Seigal\",\"doi\":\"10.1137/20M1328932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that maximum likelihood estimation in statistics is equivalent to finding the capacity in invariant theory, in two statistical settings: log-linear models and Gaussian transformation families.The former includes the classical independence model while the latter includes matrix normal models and Gaussian graphical models given by transitive directed acyclic graphs. We use stability under group actions to characterize boundedness of the likelihood, and existence and uniqueness of the maximum likelihood estimate. Our approach reveals promising consequences of the interplay between invariant theory and statistics. In particular, existing scaling algorithms from statistics can be used in invariant theory, and vice versa.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/20M1328932\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20M1328932","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 29

摘要

在对数线性模型和高斯变换族这两种统计设置中,我们证明了统计学中的极大似然估计等价于在不变量理论中寻找容量。前者包括经典的独立模型,后者包括矩阵正态模型和传递有向无环图给出的高斯图模型。我们用群作用下的稳定性来描述似然的有界性和最大似然估计的存在唯一性。我们的方法揭示了不变量理论和统计学之间相互作用的有希望的结果。特别是,现有的统计学缩放算法可以用于不变量理论,反之亦然。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant Theory and Scaling Algorithms for Maximum Likelihood Estimation
We show that maximum likelihood estimation in statistics is equivalent to finding the capacity in invariant theory, in two statistical settings: log-linear models and Gaussian transformation families.The former includes the classical independence model while the latter includes matrix normal models and Gaussian graphical models given by transitive directed acyclic graphs. We use stability under group actions to characterize boundedness of the likelihood, and existence and uniqueness of the maximum likelihood estimate. Our approach reveals promising consequences of the interplay between invariant theory and statistics. In particular, existing scaling algorithms from statistics can be used in invariant theory, and vice versa.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信