Carlos Am'endola, Kathlén Kohn, Philipp Reichenbach, A. Seigal
{"title":"极大似然估计的不变量理论和缩放算法","authors":"Carlos Am'endola, Kathlén Kohn, Philipp Reichenbach, A. Seigal","doi":"10.1137/20M1328932","DOIUrl":null,"url":null,"abstract":"We show that maximum likelihood estimation in statistics is equivalent to finding the capacity in invariant theory, in two statistical settings: log-linear models and Gaussian transformation families.The former includes the classical independence model while the latter includes matrix normal models and Gaussian graphical models given by transitive directed acyclic graphs. We use stability under group actions to characterize boundedness of the likelihood, and existence and uniqueness of the maximum likelihood estimate. Our approach reveals promising consequences of the interplay between invariant theory and statistics. In particular, existing scaling algorithms from statistics can be used in invariant theory, and vice versa.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Invariant Theory and Scaling Algorithms for Maximum Likelihood Estimation\",\"authors\":\"Carlos Am'endola, Kathlén Kohn, Philipp Reichenbach, A. Seigal\",\"doi\":\"10.1137/20M1328932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that maximum likelihood estimation in statistics is equivalent to finding the capacity in invariant theory, in two statistical settings: log-linear models and Gaussian transformation families.The former includes the classical independence model while the latter includes matrix normal models and Gaussian graphical models given by transitive directed acyclic graphs. We use stability under group actions to characterize boundedness of the likelihood, and existence and uniqueness of the maximum likelihood estimate. Our approach reveals promising consequences of the interplay between invariant theory and statistics. In particular, existing scaling algorithms from statistics can be used in invariant theory, and vice versa.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/20M1328932\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20M1328932","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Invariant Theory and Scaling Algorithms for Maximum Likelihood Estimation
We show that maximum likelihood estimation in statistics is equivalent to finding the capacity in invariant theory, in two statistical settings: log-linear models and Gaussian transformation families.The former includes the classical independence model while the latter includes matrix normal models and Gaussian graphical models given by transitive directed acyclic graphs. We use stability under group actions to characterize boundedness of the likelihood, and existence and uniqueness of the maximum likelihood estimate. Our approach reveals promising consequences of the interplay between invariant theory and statistics. In particular, existing scaling algorithms from statistics can be used in invariant theory, and vice versa.