关于图的带符号匹配

IF 0.5 Q3 MATHEMATICS
S. Javan, H. Maimani
{"title":"关于图的带符号匹配","authors":"S. Javan, H. Maimani","doi":"10.22190/FUMI2002541J","DOIUrl":null,"url":null,"abstract":"For a graph $G$ and any $v\\in V(G)$, $E_{G}(v)$ is the set of all edges incident with $v$. A function $f:E(G)\\rightarrow \\{-1,1\\}$ is called a signed matching  of $G$ if  $\\sum_{e\\in E(v)}f(e) \\leq 1$ for every $ {v\\in V(G)}$. For a signed matching $x$, set $x(E(G))=\\sum_{e\\in E(G))}x(e)$. The signed  matching number of $G$, denoted by $\\beta_1'(G)$, is the maximum $x(E(G))$ where the maximum is taken over all signed matching over $G$. In this paper we obtain the signed matching number of some families of graphs and study the signed matching number of subdivision and edge deletion of edges of graph.","PeriodicalId":54148,"journal":{"name":"Facta Universitatis-Series Mathematics and Informatics","volume":"116 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2020-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE SIGNED MATCHINGS OF GRAPHS\",\"authors\":\"S. Javan, H. Maimani\",\"doi\":\"10.22190/FUMI2002541J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a graph $G$ and any $v\\\\in V(G)$, $E_{G}(v)$ is the set of all edges incident with $v$. A function $f:E(G)\\\\rightarrow \\\\{-1,1\\\\}$ is called a signed matching  of $G$ if  $\\\\sum_{e\\\\in E(v)}f(e) \\\\leq 1$ for every $ {v\\\\in V(G)}$. For a signed matching $x$, set $x(E(G))=\\\\sum_{e\\\\in E(G))}x(e)$. The signed  matching number of $G$, denoted by $\\\\beta_1'(G)$, is the maximum $x(E(G))$ where the maximum is taken over all signed matching over $G$. In this paper we obtain the signed matching number of some families of graphs and study the signed matching number of subdivision and edge deletion of edges of graph.\",\"PeriodicalId\":54148,\"journal\":{\"name\":\"Facta Universitatis-Series Mathematics and Informatics\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Facta Universitatis-Series Mathematics and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22190/FUMI2002541J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta Universitatis-Series Mathematics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUMI2002541J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于图$G$和任意$v\in V(G)$, $E_{G}(v)$是与$v$相关的所有边的集合。对于每个$ {v\in V(G)}$,函数$f:E(G)\rightarrow \{-1,1\}$被称为$G$如果$\sum_{e\in E(v)}f(e) \leq 1$的签名匹配。对于签名匹配$x$,请设置$x(E(G))=\sum_{e\in E(G))}x(e)$。$G$的签名匹配数,用$\beta_1'(G)$表示,是最大的$x(E(G))$,其中最大值取$G$上的所有签名匹配。本文给出了若干图族的签名匹配数,并研究了图的边的细分和边的删除的签名匹配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE SIGNED MATCHINGS OF GRAPHS
For a graph $G$ and any $v\in V(G)$, $E_{G}(v)$ is the set of all edges incident with $v$. A function $f:E(G)\rightarrow \{-1,1\}$ is called a signed matching  of $G$ if  $\sum_{e\in E(v)}f(e) \leq 1$ for every $ {v\in V(G)}$. For a signed matching $x$, set $x(E(G))=\sum_{e\in E(G))}x(e)$. The signed  matching number of $G$, denoted by $\beta_1'(G)$, is the maximum $x(E(G))$ where the maximum is taken over all signed matching over $G$. In this paper we obtain the signed matching number of some families of graphs and study the signed matching number of subdivision and edge deletion of edges of graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信