{"title":"从鱼流到弹性管壁的能量流,a.轴对称不稳定模式","authors":"Mahmoud Hamadiche","doi":"10.1016/S1287-4620(00)88519-1","DOIUrl":null,"url":null,"abstract":"<div><p>Ne compute the energy flux from a fluid flowing to an elastic hollow cylindrical tube generated by unstable modes. The basic fluid velocity flow is the parabolic Hagen-Poiseuille flow. We show that the energy flux from the fluid flowing to the elastic wall is positive when the mode is unstable, negative when the mode is stable, and null when the mode is neutral. Moreover the energy flux from the fluid flowing to the elastic solid is generated by the component of the force perpendicular to the wall at the interface for high Reynolds numbers, and essentially by the streamwise component of the force at interface for low Reynolds numbers.</p></div>","PeriodicalId":100303,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","volume":"327 11","pages":"Pages 1155-1161"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88519-1","citationCount":"2","resultStr":"{\"title\":\"Flux d'énergie d'un écoulement de Poiseuille vers la paroi d'un tube élastique, a. Modes d'instabilité axisymétrique\",\"authors\":\"Mahmoud Hamadiche\",\"doi\":\"10.1016/S1287-4620(00)88519-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ne compute the energy flux from a fluid flowing to an elastic hollow cylindrical tube generated by unstable modes. The basic fluid velocity flow is the parabolic Hagen-Poiseuille flow. We show that the energy flux from the fluid flowing to the elastic wall is positive when the mode is unstable, negative when the mode is stable, and null when the mode is neutral. Moreover the energy flux from the fluid flowing to the elastic solid is generated by the component of the force perpendicular to the wall at the interface for high Reynolds numbers, and essentially by the streamwise component of the force at interface for low Reynolds numbers.</p></div>\",\"PeriodicalId\":100303,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"volume\":\"327 11\",\"pages\":\"Pages 1155-1161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1287-4620(00)88519-1\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1287462000885191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics-Physics-Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1287462000885191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flux d'énergie d'un écoulement de Poiseuille vers la paroi d'un tube élastique, a. Modes d'instabilité axisymétrique
Ne compute the energy flux from a fluid flowing to an elastic hollow cylindrical tube generated by unstable modes. The basic fluid velocity flow is the parabolic Hagen-Poiseuille flow. We show that the energy flux from the fluid flowing to the elastic wall is positive when the mode is unstable, negative when the mode is stable, and null when the mode is neutral. Moreover the energy flux from the fluid flowing to the elastic solid is generated by the component of the force perpendicular to the wall at the interface for high Reynolds numbers, and essentially by the streamwise component of the force at interface for low Reynolds numbers.