Jiachen Ma, Luqing Zhang, B. Geng, U. Azhar, A. Xu, Shuxiang Zhang
{"title":"在纳米反应器中通过raft介导的水相聚合制备热响应和交联的氟化纳米颗粒","authors":"Jiachen Ma, Luqing Zhang, B. Geng, U. Azhar, A. Xu, Shuxiang Zhang","doi":"10.3390/molecules22020152","DOIUrl":null,"url":null,"abstract":"In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide-b-N-isopropylacrylamide) (PDMA-b-PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. 1H-NMR and 19F-NMR spectra showed that thermo-responsive diblock P(DMA-b-NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA-b-NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14–44 °C, suggesting good temperature sensitivity for these nanoparticles.","PeriodicalId":19033,"journal":{"name":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Preparation of Thermo-Responsive and Cross-Linked Fluorinated Nanoparticles via RAFT-Mediated Aqueous Polymerization in Nanoreactors\",\"authors\":\"Jiachen Ma, Luqing Zhang, B. Geng, U. Azhar, A. Xu, Shuxiang Zhang\",\"doi\":\"10.3390/molecules22020152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide-b-N-isopropylacrylamide) (PDMA-b-PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. 1H-NMR and 19F-NMR spectra showed that thermo-responsive diblock P(DMA-b-NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA-b-NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14–44 °C, suggesting good temperature sensitivity for these nanoparticles.\",\"PeriodicalId\":19033,\"journal\":{\"name\":\"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/molecules22020152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/molecules22020152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Preparation of Thermo-Responsive and Cross-Linked Fluorinated Nanoparticles via RAFT-Mediated Aqueous Polymerization in Nanoreactors
In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide-b-N-isopropylacrylamide) (PDMA-b-PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. 1H-NMR and 19F-NMR spectra showed that thermo-responsive diblock P(DMA-b-NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA-b-NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14–44 °C, suggesting good temperature sensitivity for these nanoparticles.