基于噪声级差的多目标拼接伪造检测

Bo Liu, Chi-Man Pun
{"title":"基于噪声级差的多目标拼接伪造检测","authors":"Bo Liu, Chi-Man Pun","doi":"10.1109/DESEC.2017.8073884","DOIUrl":null,"url":null,"abstract":"Splicing forgery is a commonly used operation in digital image synthesize. Exposing multi-object splicing forgery by detecting noise discrepancy is discussed in this paper. The image is firstly segmented into small segments and noise level function, which reveals relationship between image noise and pixels' intensity is estimated. Suspicious regions are detected by checking constrains of noise level function. In the experiment, a new dataset is used for evaluating the proposed method. The experimental results show the effectiveness and robustness in dealing with multi-objects splicing forgery. Besides, comparisons prove our method is superior to the existing state-of-art.","PeriodicalId":92346,"journal":{"name":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","volume":"1 1","pages":"533-534"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multi-object splicing forgery detection using noise level difference\",\"authors\":\"Bo Liu, Chi-Man Pun\",\"doi\":\"10.1109/DESEC.2017.8073884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Splicing forgery is a commonly used operation in digital image synthesize. Exposing multi-object splicing forgery by detecting noise discrepancy is discussed in this paper. The image is firstly segmented into small segments and noise level function, which reveals relationship between image noise and pixels' intensity is estimated. Suspicious regions are detected by checking constrains of noise level function. In the experiment, a new dataset is used for evaluating the proposed method. The experimental results show the effectiveness and robustness in dealing with multi-objects splicing forgery. Besides, comparisons prove our method is superior to the existing state-of-art.\",\"PeriodicalId\":92346,\"journal\":{\"name\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"volume\":\"1 1\",\"pages\":\"533-534\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DESEC.2017.8073884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DASC-PICom-DataCom-CyberSciTech 2017 : 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure Computing ; 2017 IEEE 15th International Conference on Pervasive Intelligence and Computing ; 2017 IEEE 3rd International...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DESEC.2017.8073884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

拼接伪造是数字图像合成中常用的一种操作。本文讨论了通过检测噪声差异来暴露多目标拼接伪造的方法。首先将图像分割成小块,利用噪声级函数估计图像噪声与像素强度之间的关系;通过检查噪声级函数的约束来检测可疑区域。在实验中,使用一个新的数据集来评估所提出的方法。实验结果表明,该方法对多目标拼接伪造具有较好的鲁棒性和有效性。此外,比较表明我们的方法优于现有的技术水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-object splicing forgery detection using noise level difference
Splicing forgery is a commonly used operation in digital image synthesize. Exposing multi-object splicing forgery by detecting noise discrepancy is discussed in this paper. The image is firstly segmented into small segments and noise level function, which reveals relationship between image noise and pixels' intensity is estimated. Suspicious regions are detected by checking constrains of noise level function. In the experiment, a new dataset is used for evaluating the proposed method. The experimental results show the effectiveness and robustness in dealing with multi-objects splicing forgery. Besides, comparisons prove our method is superior to the existing state-of-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信