论坐标肇事逃逸的混合时间

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
H. Narayanan, P. Srivastava
{"title":"论坐标肇事逃逸的混合时间","authors":"H. Narayanan, P. Srivastava","doi":"10.1017/S0963548321000328","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>We obtain a polynomial upper bound on the mixing time <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline1.png\" />\n\t\t<jats:tex-math>\n$T_{CHR}(\\epsilon)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of the coordinate Hit-and-Run (CHR) random walk on an <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline2.png\" />\n\t\t<jats:tex-math>\n$n-$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>dimensional convex body, where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline3.png\" />\n\t\t<jats:tex-math>\n$T_{CHR}(\\epsilon)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is the number of steps needed to reach within <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline4.png\" />\n\t\t<jats:tex-math>\n$\\epsilon$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of the uniform distribution with respect to the total variation distance, starting from a warm start (i.e., a distribution which has a density with respect to the uniform distribution on the convex body that is bounded above by a constant). Our upper bound is polynomial in <jats:italic>n</jats:italic>, <jats:italic>R</jats:italic> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline5.png\" />\n\t\t<jats:tex-math>\n$\\frac{1}{\\epsilon}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, where we assume that the convex body contains the unit <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline6.png\" />\n\t\t<jats:tex-math>\n$\\Vert\\cdot\\Vert_\\infty$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-unit ball <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline7.png\" />\n\t\t<jats:tex-math>\n$B_\\infty$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and is contained in its <jats:italic>R</jats:italic>-dilation <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline8.png\" />\n\t\t<jats:tex-math>\n$R\\cdot B_\\infty$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Whether CHR has a polynomial mixing time has been an open question.</jats:p>","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the mixing time of coordinate Hit-and-Run\",\"authors\":\"H. Narayanan, P. Srivastava\",\"doi\":\"10.1017/S0963548321000328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>We obtain a polynomial upper bound on the mixing time <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$T_{CHR}(\\\\epsilon)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of the coordinate Hit-and-Run (CHR) random walk on an <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$n-$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>dimensional convex body, where <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$T_{CHR}(\\\\epsilon)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is the number of steps needed to reach within <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\epsilon$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of the uniform distribution with respect to the total variation distance, starting from a warm start (i.e., a distribution which has a density with respect to the uniform distribution on the convex body that is bounded above by a constant). Our upper bound is polynomial in <jats:italic>n</jats:italic>, <jats:italic>R</jats:italic> and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\frac{1}{\\\\epsilon}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, where we assume that the convex body contains the unit <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\Vert\\\\cdot\\\\Vert_\\\\infty$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-unit ball <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$B_\\\\infty$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and is contained in its <jats:italic>R</jats:italic>-dilation <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$R\\\\cdot B_\\\\infty$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. Whether CHR has a polynomial mixing time has been an open question.</jats:p>\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548321000328\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548321000328","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 10

摘要

得到了混合时间的多项式上界 $T_{CHR}(\epsilon)$ 的坐标肇事逃逸(CHR)随机漫步 $n-$ 次元凸体,其中 $T_{CHR}(\epsilon)$ 到达内部需要多少步 $\epsilon$ 均匀分布相对于总变化距离,从一个温暖的起点开始(即,一个分布相对于凸体上的均匀分布有一个密度,上面有一个常数的边界)。上界是n R和 $\frac{1}{\epsilon}$ ,其中我们假设凸体包含该单元 $\Vert\cdot\Vert_\infty$ 单位球 $B_\infty$ 并包含在r膨胀中 $R\cdot B_\infty$ . CHR是否具有多项式混合时间一直是一个悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the mixing time of coordinate Hit-and-Run
We obtain a polynomial upper bound on the mixing time $T_{CHR}(\epsilon)$ of the coordinate Hit-and-Run (CHR) random walk on an $n-$ dimensional convex body, where $T_{CHR}(\epsilon)$ is the number of steps needed to reach within $\epsilon$ of the uniform distribution with respect to the total variation distance, starting from a warm start (i.e., a distribution which has a density with respect to the uniform distribution on the convex body that is bounded above by a constant). Our upper bound is polynomial in n, R and $\frac{1}{\epsilon}$ , where we assume that the convex body contains the unit $\Vert\cdot\Vert_\infty$ -unit ball $B_\infty$ and is contained in its R-dilation $R\cdot B_\infty$ . Whether CHR has a polynomial mixing time has been an open question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信