{"title":"论坐标肇事逃逸的混合时间","authors":"H. Narayanan, P. Srivastava","doi":"10.1017/S0963548321000328","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>We obtain a polynomial upper bound on the mixing time <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline1.png\" />\n\t\t<jats:tex-math>\n$T_{CHR}(\\epsilon)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of the coordinate Hit-and-Run (CHR) random walk on an <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline2.png\" />\n\t\t<jats:tex-math>\n$n-$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>dimensional convex body, where <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline3.png\" />\n\t\t<jats:tex-math>\n$T_{CHR}(\\epsilon)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is the number of steps needed to reach within <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline4.png\" />\n\t\t<jats:tex-math>\n$\\epsilon$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of the uniform distribution with respect to the total variation distance, starting from a warm start (i.e., a distribution which has a density with respect to the uniform distribution on the convex body that is bounded above by a constant). Our upper bound is polynomial in <jats:italic>n</jats:italic>, <jats:italic>R</jats:italic> and <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline5.png\" />\n\t\t<jats:tex-math>\n$\\frac{1}{\\epsilon}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>, where we assume that the convex body contains the unit <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline6.png\" />\n\t\t<jats:tex-math>\n$\\Vert\\cdot\\Vert_\\infty$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-unit ball <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline7.png\" />\n\t\t<jats:tex-math>\n$B_\\infty$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and is contained in its <jats:italic>R</jats:italic>-dilation <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548321000328_inline8.png\" />\n\t\t<jats:tex-math>\n$R\\cdot B_\\infty$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. Whether CHR has a polynomial mixing time has been an open question.</jats:p>","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"On the mixing time of coordinate Hit-and-Run\",\"authors\":\"H. Narayanan, P. Srivastava\",\"doi\":\"10.1017/S0963548321000328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>We obtain a polynomial upper bound on the mixing time <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$T_{CHR}(\\\\epsilon)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of the coordinate Hit-and-Run (CHR) random walk on an <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$n-$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>dimensional convex body, where <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$T_{CHR}(\\\\epsilon)$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> is the number of steps needed to reach within <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\epsilon$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of the uniform distribution with respect to the total variation distance, starting from a warm start (i.e., a distribution which has a density with respect to the uniform distribution on the convex body that is bounded above by a constant). Our upper bound is polynomial in <jats:italic>n</jats:italic>, <jats:italic>R</jats:italic> and <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\frac{1}{\\\\epsilon}$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>, where we assume that the convex body contains the unit <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\Vert\\\\cdot\\\\Vert_\\\\infty$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>-unit ball <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$B_\\\\infty$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and is contained in its <jats:italic>R</jats:italic>-dilation <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548321000328_inline8.png\\\" />\\n\\t\\t<jats:tex-math>\\n$R\\\\cdot B_\\\\infty$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. Whether CHR has a polynomial mixing time has been an open question.</jats:p>\",\"PeriodicalId\":10513,\"journal\":{\"name\":\"Combinatorics, Probability & Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability & Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0963548321000328\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0963548321000328","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We obtain a polynomial upper bound on the mixing time
$T_{CHR}(\epsilon)$
of the coordinate Hit-and-Run (CHR) random walk on an
$n-$
dimensional convex body, where
$T_{CHR}(\epsilon)$
is the number of steps needed to reach within
$\epsilon$
of the uniform distribution with respect to the total variation distance, starting from a warm start (i.e., a distribution which has a density with respect to the uniform distribution on the convex body that is bounded above by a constant). Our upper bound is polynomial in n, R and
$\frac{1}{\epsilon}$
, where we assume that the convex body contains the unit
$\Vert\cdot\Vert_\infty$
-unit ball
$B_\infty$
and is contained in its R-dilation
$R\cdot B_\infty$
. Whether CHR has a polynomial mixing time has been an open question.
期刊介绍:
Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.