新型腺苷激酶抑制剂的最新发现:作用机制和治疗潜力。

S. McGaraughty, M. Cowart, M. Jarvis
{"title":"新型腺苷激酶抑制剂的最新发现:作用机制和治疗潜力。","authors":"S. McGaraughty, M. Cowart, M. Jarvis","doi":"10.1111/J.1527-3458.2001.TB00208.X","DOIUrl":null,"url":null,"abstract":"Adenosine (ADO) is an endogenous inhibitory neuromodulator that limits cellular excitability in response to tissue trauma and inflammation. Adenosine kinase (AK; EC 2.7.1.20) is the primary metabolic enzyme regulating intra- and extracellular concentrations of ADO. AK inhibitors have been shown to significantly increase ADO concentrations at sites of tissue injury and to provide effective antinociceptive, antiinflammatory, and anticonvulsant activity in animal models. Structurally novel nucleoside and non-nucleoside AK inhibitors that demonstrate high specificity for the AK enzyme compared with other ADO metabolic enzymes, transporters, and receptors have recently been synthesized. These compounds have also demonstrated improved cellular and tissue penetration compared with earlier tubercidin analogs. These compounds have been shown to exert beneficial effects in animal models of pain, inflammation and epilepsy with reduced cardiovascular side effects compared with direct acting ADO receptor (P1) agonists, thus supporting the hypothesis that AK inhibitors can enhance the actions of ADO in a site- and event-specific fashion.","PeriodicalId":10499,"journal":{"name":"CNS drug reviews","volume":"110 1","pages":"415-32"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":"{\"title\":\"Recent developments in the discovery of novel adenosine kinase inhibitors: mechanism of action and therapeutic potential.\",\"authors\":\"S. McGaraughty, M. Cowart, M. Jarvis\",\"doi\":\"10.1111/J.1527-3458.2001.TB00208.X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Adenosine (ADO) is an endogenous inhibitory neuromodulator that limits cellular excitability in response to tissue trauma and inflammation. Adenosine kinase (AK; EC 2.7.1.20) is the primary metabolic enzyme regulating intra- and extracellular concentrations of ADO. AK inhibitors have been shown to significantly increase ADO concentrations at sites of tissue injury and to provide effective antinociceptive, antiinflammatory, and anticonvulsant activity in animal models. Structurally novel nucleoside and non-nucleoside AK inhibitors that demonstrate high specificity for the AK enzyme compared with other ADO metabolic enzymes, transporters, and receptors have recently been synthesized. These compounds have also demonstrated improved cellular and tissue penetration compared with earlier tubercidin analogs. These compounds have been shown to exert beneficial effects in animal models of pain, inflammation and epilepsy with reduced cardiovascular side effects compared with direct acting ADO receptor (P1) agonists, thus supporting the hypothesis that AK inhibitors can enhance the actions of ADO in a site- and event-specific fashion.\",\"PeriodicalId\":10499,\"journal\":{\"name\":\"CNS drug reviews\",\"volume\":\"110 1\",\"pages\":\"415-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"41\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS drug reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/J.1527-3458.2001.TB00208.X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS drug reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/J.1527-3458.2001.TB00208.X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41

摘要

腺苷(ADO)是一种内源性抑制性神经调节剂,在组织创伤和炎症反应中限制细胞的兴奋性。腺苷激酶;EC(2.7.1.20)是调节ADO细胞内和细胞外浓度的主要代谢酶。在动物模型中,AK抑制剂已被证明能显著增加组织损伤部位的ADO浓度,并提供有效的抗损伤、抗炎和抗惊厥活性。结构新颖的核苷类和非核苷类AK抑制剂,与其他ADO代谢酶、转运体和受体相比,对AK酶具有较高的特异性。与早期的结核菌素类似物相比,这些化合物也证明了细胞和组织渗透能力的提高。与直接作用ADO受体(P1)激动剂相比,这些化合物在疼痛、炎症和癫痫的动物模型中发挥了有益的作用,心血管副作用减少,从而支持了AK抑制剂可以以部位和事件特异性方式增强ADO作用的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recent developments in the discovery of novel adenosine kinase inhibitors: mechanism of action and therapeutic potential.
Adenosine (ADO) is an endogenous inhibitory neuromodulator that limits cellular excitability in response to tissue trauma and inflammation. Adenosine kinase (AK; EC 2.7.1.20) is the primary metabolic enzyme regulating intra- and extracellular concentrations of ADO. AK inhibitors have been shown to significantly increase ADO concentrations at sites of tissue injury and to provide effective antinociceptive, antiinflammatory, and anticonvulsant activity in animal models. Structurally novel nucleoside and non-nucleoside AK inhibitors that demonstrate high specificity for the AK enzyme compared with other ADO metabolic enzymes, transporters, and receptors have recently been synthesized. These compounds have also demonstrated improved cellular and tissue penetration compared with earlier tubercidin analogs. These compounds have been shown to exert beneficial effects in animal models of pain, inflammation and epilepsy with reduced cardiovascular side effects compared with direct acting ADO receptor (P1) agonists, thus supporting the hypothesis that AK inhibitors can enhance the actions of ADO in a site- and event-specific fashion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信