{"title":"基于新积分形式的状态方程(IFEOS)研究纳米材料体积热膨胀的温度依赖性","authors":"Mahipal Singh, Madan Singh","doi":"10.9734/bpi/rtcams/v1/11210d","DOIUrl":null,"url":null,"abstract":"The volume thermal expansion of nanomaterials under the influence of temperature has been studied using a new integral form of equation of state (IFEOS). A wide variety of nanomaterials such as fullerene (C60), 20 nm-Ni, 15 nm-(80Ni+20Fe), n-ZnO, n-TiO2 and n-NiO has been considered to analyse the influence of temperature on them. The acquired results were compared to existing experimental data as well as other theoretical approaches. The validity of the newly established integral form of equation of state (IFEOS) for nanomaterials is supported by excellent agreement between theory and current experimental data.","PeriodicalId":21032,"journal":{"name":"Recent Trends in Chemical and Material Sciences Vol. 1","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Temperature Dependence of Volume Thermal Expansion of Nanomaterials Using New Integral Form of Equation of State (IFEOS)\",\"authors\":\"Mahipal Singh, Madan Singh\",\"doi\":\"10.9734/bpi/rtcams/v1/11210d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The volume thermal expansion of nanomaterials under the influence of temperature has been studied using a new integral form of equation of state (IFEOS). A wide variety of nanomaterials such as fullerene (C60), 20 nm-Ni, 15 nm-(80Ni+20Fe), n-ZnO, n-TiO2 and n-NiO has been considered to analyse the influence of temperature on them. The acquired results were compared to existing experimental data as well as other theoretical approaches. The validity of the newly established integral form of equation of state (IFEOS) for nanomaterials is supported by excellent agreement between theory and current experimental data.\",\"PeriodicalId\":21032,\"journal\":{\"name\":\"Recent Trends in Chemical and Material Sciences Vol. 1\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent Trends in Chemical and Material Sciences Vol. 1\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/bpi/rtcams/v1/11210d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Trends in Chemical and Material Sciences Vol. 1","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/bpi/rtcams/v1/11210d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of Temperature Dependence of Volume Thermal Expansion of Nanomaterials Using New Integral Form of Equation of State (IFEOS)
The volume thermal expansion of nanomaterials under the influence of temperature has been studied using a new integral form of equation of state (IFEOS). A wide variety of nanomaterials such as fullerene (C60), 20 nm-Ni, 15 nm-(80Ni+20Fe), n-ZnO, n-TiO2 and n-NiO has been considered to analyse the influence of temperature on them. The acquired results were compared to existing experimental data as well as other theoretical approaches. The validity of the newly established integral form of equation of state (IFEOS) for nanomaterials is supported by excellent agreement between theory and current experimental data.