基于深度学习的超声速喷管形状优化与流动分析

IF 1.1 4区 工程技术 Q4 MECHANICS
Aref Zanjani, A. Tahsini, Kimia Sadafi, Fatemeh Ghavidel Mangodeh
{"title":"基于深度学习的超声速喷管形状优化与流动分析","authors":"Aref Zanjani, A. Tahsini, Kimia Sadafi, Fatemeh Ghavidel Mangodeh","doi":"10.1080/10618562.2023.2225416","DOIUrl":null,"url":null,"abstract":"Shape optimisation of supersonic nozzles is of crucial importance in designing propulsion systems and space thrusters. In order to optimise the profile of a supersonic nozzle, the properties of the flow inside the nozzle should be obtained. This paper proposes and verifies a new methodology for analysing flows and designing supersonic nozzles. Flow analysis has been conducted using the method of characteristics, Ansys Fluent and convolutional neural networks. It is shown that deep convolutional neural networks can reach high levels of accuracy in predicting supersonic flow behaviour inside the nozzle. Also, shape optimisation of the supersonic nozzle has been conducted using the genetic algorithm in Ansys Fluent and artificial neural networks. The proposed ANN can optimise the shape of a supersonic nozzle for the given throat diameter, outlet diameter and nozzle length with high accuracy.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"95 1","pages":"875 - 891"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Shape Optimization and Flow Analysis of Supersonic Nozzles Using Deep Learning\",\"authors\":\"Aref Zanjani, A. Tahsini, Kimia Sadafi, Fatemeh Ghavidel Mangodeh\",\"doi\":\"10.1080/10618562.2023.2225416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shape optimisation of supersonic nozzles is of crucial importance in designing propulsion systems and space thrusters. In order to optimise the profile of a supersonic nozzle, the properties of the flow inside the nozzle should be obtained. This paper proposes and verifies a new methodology for analysing flows and designing supersonic nozzles. Flow analysis has been conducted using the method of characteristics, Ansys Fluent and convolutional neural networks. It is shown that deep convolutional neural networks can reach high levels of accuracy in predicting supersonic flow behaviour inside the nozzle. Also, shape optimisation of the supersonic nozzle has been conducted using the genetic algorithm in Ansys Fluent and artificial neural networks. The proposed ANN can optimise the shape of a supersonic nozzle for the given throat diameter, outlet diameter and nozzle length with high accuracy.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"95 1\",\"pages\":\"875 - 891\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2023.2225416\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2023.2225416","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1

摘要

超音速喷管的形状优化在推进系统和空间推力器设计中具有重要意义。为了优化超声速喷管的型面,必须了解喷管内部的流动特性。本文提出并验证了一种超声速喷管流动分析和设计的新方法。采用特征分析方法、Ansys Fluent和卷积神经网络进行了流动分析。研究表明,深度卷积神经网络在预测喷管内部超声速流动行为方面具有较高的精度。利用Ansys Fluent中的遗传算法和人工神经网络对超声速喷管进行了形状优化。所提出的人工神经网络可以在给定喉道直径、出口直径和喷嘴长度的情况下对超音速喷嘴形状进行高精度优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape Optimization and Flow Analysis of Supersonic Nozzles Using Deep Learning
Shape optimisation of supersonic nozzles is of crucial importance in designing propulsion systems and space thrusters. In order to optimise the profile of a supersonic nozzle, the properties of the flow inside the nozzle should be obtained. This paper proposes and verifies a new methodology for analysing flows and designing supersonic nozzles. Flow analysis has been conducted using the method of characteristics, Ansys Fluent and convolutional neural networks. It is shown that deep convolutional neural networks can reach high levels of accuracy in predicting supersonic flow behaviour inside the nozzle. Also, shape optimisation of the supersonic nozzle has been conducted using the genetic algorithm in Ansys Fluent and artificial neural networks. The proposed ANN can optimise the shape of a supersonic nozzle for the given throat diameter, outlet diameter and nozzle length with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
7.70%
发文量
25
审稿时长
3 months
期刊介绍: The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields. The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信