{"title":"斐波那契立方体、卢卡斯立方体和交替卢卡斯立方体中的欧拉数和直径路径","authors":"O. Egecioglu, Elif Saygı, Zülfükar Saygı","doi":"10.1142/s1793830923500271","DOIUrl":null,"url":null,"abstract":"The diameter of a graph is the maximum distance between pairs of vertices in the graph. A pair of vertices whose distance is equal to its diameter are called diametrically opposite vertices. The collection of shortest paths between diametrically opposite vertices are referred as diametral paths. In this work, we enumerate the number of diametral paths for Fibonacci cubes, Lucas cubes and Alternate Lucas cubes. We present bijective proofs that show that these numbers are related to alternating permutations and are enumerated by Euler numbers.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"87 11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Euler Numbers and Diametral Paths in Fibonacci Cubes, Lucas Cubes and Alternate Lucas Cubes\",\"authors\":\"O. Egecioglu, Elif Saygı, Zülfükar Saygı\",\"doi\":\"10.1142/s1793830923500271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diameter of a graph is the maximum distance between pairs of vertices in the graph. A pair of vertices whose distance is equal to its diameter are called diametrically opposite vertices. The collection of shortest paths between diametrically opposite vertices are referred as diametral paths. In this work, we enumerate the number of diametral paths for Fibonacci cubes, Lucas cubes and Alternate Lucas cubes. We present bijective proofs that show that these numbers are related to alternating permutations and are enumerated by Euler numbers.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"87 11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Euler Numbers and Diametral Paths in Fibonacci Cubes, Lucas Cubes and Alternate Lucas Cubes
The diameter of a graph is the maximum distance between pairs of vertices in the graph. A pair of vertices whose distance is equal to its diameter are called diametrically opposite vertices. The collection of shortest paths between diametrically opposite vertices are referred as diametral paths. In this work, we enumerate the number of diametral paths for Fibonacci cubes, Lucas cubes and Alternate Lucas cubes. We present bijective proofs that show that these numbers are related to alternating permutations and are enumerated by Euler numbers.