斐波那契立方体、卢卡斯立方体和交替卢卡斯立方体中的欧拉数和直径路径

IF 0.6 Q4 MATHEMATICS, APPLIED
O. Egecioglu, Elif Saygı, Zülfükar Saygı
{"title":"斐波那契立方体、卢卡斯立方体和交替卢卡斯立方体中的欧拉数和直径路径","authors":"O. Egecioglu, Elif Saygı, Zülfükar Saygı","doi":"10.1142/s1793830923500271","DOIUrl":null,"url":null,"abstract":"The diameter of a graph is the maximum distance between pairs of vertices in the graph. A pair of vertices whose distance is equal to its diameter are called diametrically opposite vertices. The collection of shortest paths between diametrically opposite vertices are referred as diametral paths. In this work, we enumerate the number of diametral paths for Fibonacci cubes, Lucas cubes and Alternate Lucas cubes. We present bijective proofs that show that these numbers are related to alternating permutations and are enumerated by Euler numbers.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"87 11 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Euler Numbers and Diametral Paths in Fibonacci Cubes, Lucas Cubes and Alternate Lucas Cubes\",\"authors\":\"O. Egecioglu, Elif Saygı, Zülfükar Saygı\",\"doi\":\"10.1142/s1793830923500271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diameter of a graph is the maximum distance between pairs of vertices in the graph. A pair of vertices whose distance is equal to its diameter are called diametrically opposite vertices. The collection of shortest paths between diametrically opposite vertices are referred as diametral paths. In this work, we enumerate the number of diametral paths for Fibonacci cubes, Lucas cubes and Alternate Lucas cubes. We present bijective proofs that show that these numbers are related to alternating permutations and are enumerated by Euler numbers.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"87 11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

图的直径是图中顶点对之间的最大距离。一对顶点的距离等于其直径的顶点称为对径顶点。在完全相反的顶点之间的最短路径的集合被称为直径路径。在这项工作中,我们列举了Fibonacci立方体,Lucas立方体和Alternate Lucas立方体的直径路径的数量。我们给出了客观的证明,证明这些数与交替排列有关,并由欧拉数枚举。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euler Numbers and Diametral Paths in Fibonacci Cubes, Lucas Cubes and Alternate Lucas Cubes
The diameter of a graph is the maximum distance between pairs of vertices in the graph. A pair of vertices whose distance is equal to its diameter are called diametrically opposite vertices. The collection of shortest paths between diametrically opposite vertices are referred as diametral paths. In this work, we enumerate the number of diametral paths for Fibonacci cubes, Lucas cubes and Alternate Lucas cubes. We present bijective proofs that show that these numbers are related to alternating permutations and are enumerated by Euler numbers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信