S. Garanin, Y. Dolgopolov, G. N. Kachalin, A. V. Kopalkin, S. M. Kulikov, S. N. Pevnyi, F. Starikov, S. A. Sukharev
{"title":"双通道爆炸泵浦光解碘激光器与SBS反射镜的相结合","authors":"S. Garanin, Y. Dolgopolov, G. N. Kachalin, A. V. Kopalkin, S. M. Kulikov, S. N. Pevnyi, F. Starikov, S. A. Sukharev","doi":"10.1070/qel17997","DOIUrl":null,"url":null,"abstract":"A two-channel double-pass iodine explosively pumped photodissociation laser (EPPL) with an explosively pumped master oscillator (MO) and an SBS mirror is studied. The radiation source, determined by an aperture 6 mm in diameter, through which the radiation from MO enters the turbulent surface air path, is located at a distance of 2.5 km from the amplifier unit input. An SBS mirror with a kinoform raster of microlenses is used to compensate for the amplifier and path optical inhomogeneities and to match the phases in the EPPL channels. The energy and spatial characteristics of the EPPL output radiation are studied experimentally and numerically. Good agreement is obtained between the experimental and calculated distribution of the energy density of the output EPPL radiation in the plane of the MO aperture, which is a pattern of interference between the two channels. The maximum energy density in the aperture plane is by more than 4 times greater than in the case of a single-channel EPPL.","PeriodicalId":20775,"journal":{"name":"Quantum Electronics","volume":"96 1","pages":"289 - 295"},"PeriodicalIF":0.9000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase combining of radiation from a two-channel explosively pumped photodissociation iodine laser with an SBS mirror\",\"authors\":\"S. Garanin, Y. Dolgopolov, G. N. Kachalin, A. V. Kopalkin, S. M. Kulikov, S. N. Pevnyi, F. Starikov, S. A. Sukharev\",\"doi\":\"10.1070/qel17997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-channel double-pass iodine explosively pumped photodissociation laser (EPPL) with an explosively pumped master oscillator (MO) and an SBS mirror is studied. The radiation source, determined by an aperture 6 mm in diameter, through which the radiation from MO enters the turbulent surface air path, is located at a distance of 2.5 km from the amplifier unit input. An SBS mirror with a kinoform raster of microlenses is used to compensate for the amplifier and path optical inhomogeneities and to match the phases in the EPPL channels. The energy and spatial characteristics of the EPPL output radiation are studied experimentally and numerically. Good agreement is obtained between the experimental and calculated distribution of the energy density of the output EPPL radiation in the plane of the MO aperture, which is a pattern of interference between the two channels. The maximum energy density in the aperture plane is by more than 4 times greater than in the case of a single-channel EPPL.\",\"PeriodicalId\":20775,\"journal\":{\"name\":\"Quantum Electronics\",\"volume\":\"96 1\",\"pages\":\"289 - 295\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1070/qel17997\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1070/qel17997","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Phase combining of radiation from a two-channel explosively pumped photodissociation iodine laser with an SBS mirror
A two-channel double-pass iodine explosively pumped photodissociation laser (EPPL) with an explosively pumped master oscillator (MO) and an SBS mirror is studied. The radiation source, determined by an aperture 6 mm in diameter, through which the radiation from MO enters the turbulent surface air path, is located at a distance of 2.5 km from the amplifier unit input. An SBS mirror with a kinoform raster of microlenses is used to compensate for the amplifier and path optical inhomogeneities and to match the phases in the EPPL channels. The energy and spatial characteristics of the EPPL output radiation are studied experimentally and numerically. Good agreement is obtained between the experimental and calculated distribution of the energy density of the output EPPL radiation in the plane of the MO aperture, which is a pattern of interference between the two channels. The maximum energy density in the aperture plane is by more than 4 times greater than in the case of a single-channel EPPL.
期刊介绍:
Quantum Electronics covers the following principal headings
Letters
Lasers
Active Media
Interaction of Laser Radiation with Matter
Laser Plasma
Nonlinear Optical Phenomena
Nanotechnologies
Quantum Electronic Devices
Optical Processing of Information
Fiber and Integrated Optics
Laser Applications in Technology and Metrology, Biology and Medicine.