GPGPU微架构参数的未来

C. Nugteren, Gert-Jan van den Braak, H. Corporaal
{"title":"GPGPU微架构参数的未来","authors":"C. Nugteren, Gert-Jan van den Braak, H. Corporaal","doi":"10.7873/DATE.2013.089","DOIUrl":null,"url":null,"abstract":"As graphics processing units (GPUs) are becoming increasingly popular for general purpose workloads (GPGPU), the question arises how such processors will evolve architecturally in the near future. In this work, we identify and discuss trade-offs for three GPU architecture parameters: active thread count, compute-memory ratio, and cluster and warp sizing. For each parameter, we propose changes to improve GPU design, keeping in mind trends such as dark silicon and the increasing popularity of GPGPU architectures. A key-enabler is dynamism and workload-adaptiveness, enabling among others: dynamic register file sizing, latency aware scheduling, roofline-aware DVFS, run-time cluster fusion, and dynamic warp sizing.","PeriodicalId":6310,"journal":{"name":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Future of GPGPU micro-architectural parameters\",\"authors\":\"C. Nugteren, Gert-Jan van den Braak, H. Corporaal\",\"doi\":\"10.7873/DATE.2013.089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As graphics processing units (GPUs) are becoming increasingly popular for general purpose workloads (GPGPU), the question arises how such processors will evolve architecturally in the near future. In this work, we identify and discuss trade-offs for three GPU architecture parameters: active thread count, compute-memory ratio, and cluster and warp sizing. For each parameter, we propose changes to improve GPU design, keeping in mind trends such as dark silicon and the increasing popularity of GPGPU architectures. A key-enabler is dynamism and workload-adaptiveness, enabling among others: dynamic register file sizing, latency aware scheduling, roofline-aware DVFS, run-time cluster fusion, and dynamic warp sizing.\",\"PeriodicalId\":6310,\"journal\":{\"name\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7873/DATE.2013.089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2013.089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着图形处理单元(gpu)在通用工作负载(GPGPU)中越来越流行,出现了这样的处理器在不久的将来将如何在体系结构上发展的问题。在这项工作中,我们确定并讨论了三个GPU架构参数的权衡:活动线程数,计算内存比率,集群和warp大小。对于每个参数,我们都提出了改进GPU设计的建议,同时考虑到暗硅和GPGPU架构日益普及等趋势。关键启用项是动态性和工作负载适应性,支持动态寄存器文件大小、延迟感知调度、顶线感知DVFS、运行时集群融合和动态翘度大小等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future of GPGPU micro-architectural parameters
As graphics processing units (GPUs) are becoming increasingly popular for general purpose workloads (GPGPU), the question arises how such processors will evolve architecturally in the near future. In this work, we identify and discuss trade-offs for three GPU architecture parameters: active thread count, compute-memory ratio, and cluster and warp sizing. For each parameter, we propose changes to improve GPU design, keeping in mind trends such as dark silicon and the increasing popularity of GPGPU architectures. A key-enabler is dynamism and workload-adaptiveness, enabling among others: dynamic register file sizing, latency aware scheduling, roofline-aware DVFS, run-time cluster fusion, and dynamic warp sizing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信