有限支持数学中的静态分析

A. Alexandru, Gabriel Ciobanu
{"title":"有限支持数学中的静态分析","authors":"A. Alexandru, Gabriel Ciobanu","doi":"10.1109/SYNASC.2015.56","DOIUrl":null,"url":null,"abstract":"Finitely Supported Mathematics represents the Zermelo-Fraenkel mathematics reformulated in the frameworkof invariant sets. We develop a theory of abstract interpretationswhich is consistent to the principles of constructingthe Finitely Supported Mathematics. We first translate thenotions of lattices and Galois connections into the frameworkof invariant sets, and then present their properties in termsof finitely supported objects. Later, we introduce the notionsof invariant correctness relation and invariant representationfunction, we emphasize an equivalence between them, and weestablish the relationship between these notions and invariantGalois connections. Finally, we provide some widening andnarrowing techniques in order to approximate the least fixedpoints of finitely supported transition functions.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"59 1","pages":"312-319"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Static Analysis in Finitely Supported Mathematics\",\"authors\":\"A. Alexandru, Gabriel Ciobanu\",\"doi\":\"10.1109/SYNASC.2015.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Finitely Supported Mathematics represents the Zermelo-Fraenkel mathematics reformulated in the frameworkof invariant sets. We develop a theory of abstract interpretationswhich is consistent to the principles of constructingthe Finitely Supported Mathematics. We first translate thenotions of lattices and Galois connections into the frameworkof invariant sets, and then present their properties in termsof finitely supported objects. Later, we introduce the notionsof invariant correctness relation and invariant representationfunction, we emphasize an equivalence between them, and weestablish the relationship between these notions and invariantGalois connections. Finally, we provide some widening andnarrowing techniques in order to approximate the least fixedpoints of finitely supported transition functions.\",\"PeriodicalId\":6488,\"journal\":{\"name\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"59 1\",\"pages\":\"312-319\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2015.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有限支持数学是在不变集框架下重新表述的Zermelo-Fraenkel数学。我们发展了一种抽象解释理论,它与有限支持数学的构建原则是一致的。我们首先将格和伽罗瓦连接的概念转化为不变集的框架,然后用有限支持的对象表示它们的性质。随后,我们引入了不变正确性关系和不变表示函数的概念,强调了它们之间的等价性,并建立了它们与不变伽罗瓦连接之间的关系。最后,我们提供了一些扩大和缩小的技术,以近似有限支持的转移函数的最小不动点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Static Analysis in Finitely Supported Mathematics
Finitely Supported Mathematics represents the Zermelo-Fraenkel mathematics reformulated in the frameworkof invariant sets. We develop a theory of abstract interpretationswhich is consistent to the principles of constructingthe Finitely Supported Mathematics. We first translate thenotions of lattices and Galois connections into the frameworkof invariant sets, and then present their properties in termsof finitely supported objects. Later, we introduce the notionsof invariant correctness relation and invariant representationfunction, we emphasize an equivalence between them, and weestablish the relationship between these notions and invariantGalois connections. Finally, we provide some widening andnarrowing techniques in order to approximate the least fixedpoints of finitely supported transition functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信