{"title":"一个测试套件Diagnosability标准谱故障定位方法","authors":"Alexandre Perez, Rui Abreu, A. Deursen","doi":"10.1109/ICSE.2017.66","DOIUrl":null,"url":null,"abstract":"Current metrics for assessing the adequacy of a test-suite plainly focus on the number of components (be it lines, branches, paths) covered by the suite, but do not explicitly check how the tests actually exercise these components and whether they provide enough information so that spectrum-based fault localization techniques can perform accurate fault isolation. We propose a metric, called DDU, aimed at complementing adequacy measurements by quantifying a test-suite's diagnosability, i.e., the effectiveness of applying spectrum-based fault localization to pinpoint faults in the code in the event of test failures. Our aim is to increase the value generated by creating thorough test-suites, so they are not only regarded as error detection mechanisms but also as effective diagnostic aids that help widely-used fault-localization techniques to accurately pinpoint the location of bugs in the system. Our experiments show that optimizing a test suite with respect to DDU yields a 34% gain in spectrum-based fault localization report accuracy when compared to the standard branch-coverage metric.","PeriodicalId":6505,"journal":{"name":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","volume":"17 1","pages":"654-664"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"A Test-Suite Diagnosability Metric for Spectrum-Based Fault Localization Approaches\",\"authors\":\"Alexandre Perez, Rui Abreu, A. Deursen\",\"doi\":\"10.1109/ICSE.2017.66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current metrics for assessing the adequacy of a test-suite plainly focus on the number of components (be it lines, branches, paths) covered by the suite, but do not explicitly check how the tests actually exercise these components and whether they provide enough information so that spectrum-based fault localization techniques can perform accurate fault isolation. We propose a metric, called DDU, aimed at complementing adequacy measurements by quantifying a test-suite's diagnosability, i.e., the effectiveness of applying spectrum-based fault localization to pinpoint faults in the code in the event of test failures. Our aim is to increase the value generated by creating thorough test-suites, so they are not only regarded as error detection mechanisms but also as effective diagnostic aids that help widely-used fault-localization techniques to accurately pinpoint the location of bugs in the system. Our experiments show that optimizing a test suite with respect to DDU yields a 34% gain in spectrum-based fault localization report accuracy when compared to the standard branch-coverage metric.\",\"PeriodicalId\":6505,\"journal\":{\"name\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"volume\":\"17 1\",\"pages\":\"654-664\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE.2017.66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2017.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Test-Suite Diagnosability Metric for Spectrum-Based Fault Localization Approaches
Current metrics for assessing the adequacy of a test-suite plainly focus on the number of components (be it lines, branches, paths) covered by the suite, but do not explicitly check how the tests actually exercise these components and whether they provide enough information so that spectrum-based fault localization techniques can perform accurate fault isolation. We propose a metric, called DDU, aimed at complementing adequacy measurements by quantifying a test-suite's diagnosability, i.e., the effectiveness of applying spectrum-based fault localization to pinpoint faults in the code in the event of test failures. Our aim is to increase the value generated by creating thorough test-suites, so they are not only regarded as error detection mechanisms but also as effective diagnostic aids that help widely-used fault-localization techniques to accurately pinpoint the location of bugs in the system. Our experiments show that optimizing a test suite with respect to DDU yields a 34% gain in spectrum-based fault localization report accuracy when compared to the standard branch-coverage metric.