从组合优化的上下文示例中学习MAX-SAT

Mohit Kumar, Samuel Kolb, Stefano Teso, L. D. Raedt
{"title":"从组合优化的上下文示例中学习MAX-SAT","authors":"Mohit Kumar, Samuel Kolb, Stefano Teso, L. D. Raedt","doi":"10.1609/AAAI.V34I04.5877","DOIUrl":null,"url":null,"abstract":"Combinatorial optimization problems are ubiquitous in artificial intelligence. Designing the underlying models, however, requires substantial expertise, which is a limiting factor in practice. The models typically consist of hard and soft constraints, or combine hard constraints with a preference function. We introduce a novel setting for learning combinatorial optimisation problems from contextual examples. These positive and negative examples show – in a particular context – whether the solutions are good enough or not. We develop our framework using the MAX-SAT formalism. We provide learnability results within the realizable and agnostic settings, as well as hassle, an implementation based on syntax-guided synthesis and showcase its promise on recovering synthetic and benchmark instances from examples.","PeriodicalId":8496,"journal":{"name":"Artif. Intell.","volume":"126 1","pages":"103794"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation\",\"authors\":\"Mohit Kumar, Samuel Kolb, Stefano Teso, L. D. Raedt\",\"doi\":\"10.1609/AAAI.V34I04.5877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Combinatorial optimization problems are ubiquitous in artificial intelligence. Designing the underlying models, however, requires substantial expertise, which is a limiting factor in practice. The models typically consist of hard and soft constraints, or combine hard constraints with a preference function. We introduce a novel setting for learning combinatorial optimisation problems from contextual examples. These positive and negative examples show – in a particular context – whether the solutions are good enough or not. We develop our framework using the MAX-SAT formalism. We provide learnability results within the realizable and agnostic settings, as well as hassle, an implementation based on syntax-guided synthesis and showcase its promise on recovering synthetic and benchmark instances from examples.\",\"PeriodicalId\":8496,\"journal\":{\"name\":\"Artif. Intell.\",\"volume\":\"126 1\",\"pages\":\"103794\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/AAAI.V34I04.5877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/AAAI.V34I04.5877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

组合优化问题在人工智能中普遍存在。然而,设计底层模型需要大量的专业知识,这在实践中是一个限制因素。这些模型通常由硬约束和软约束组成,或者将硬约束与偏好函数结合起来。我们引入了一个从上下文示例中学习组合优化问题的新设置。这些正面和负面的例子表明——在特定的情况下——解决方案是否足够好。我们使用MAX-SAT形式来开发我们的框架。我们在可实现和不可知的设置中提供了可学习性结果,以及基于语法引导的合成的实现,并展示了它在从示例中恢复合成和基准实例方面的承诺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning MAX-SAT from Contextual Examples for Combinatorial Optimisation
Combinatorial optimization problems are ubiquitous in artificial intelligence. Designing the underlying models, however, requires substantial expertise, which is a limiting factor in practice. The models typically consist of hard and soft constraints, or combine hard constraints with a preference function. We introduce a novel setting for learning combinatorial optimisation problems from contextual examples. These positive and negative examples show – in a particular context – whether the solutions are good enough or not. We develop our framework using the MAX-SAT formalism. We provide learnability results within the realizable and agnostic settings, as well as hassle, an implementation based on syntax-guided synthesis and showcase its promise on recovering synthetic and benchmark instances from examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信