网络物理空间中的用户识别:移动查询日志和轨迹的案例研究

Tianyi Hao, Jingbo Zhou, Yunsheng Cheng, Longbo Huang, Haishan Wu
{"title":"网络物理空间中的用户识别:移动查询日志和轨迹的案例研究","authors":"Tianyi Hao, Jingbo Zhou, Yunsheng Cheng, Longbo Huang, Haishan Wu","doi":"10.1145/2996913.2997017","DOIUrl":null,"url":null,"abstract":"User identification across domains draws lots of research effort in recent years. Although most of existing works focus on user identification in a single space, in this paper, we first try to identify users by fusing their activities in cyber space and physical space, which helps us obtain a comprehensive understanding about users' online behaviours as well as offline visitation. Out profound insight to tackle this problem is that we can build a connection between the cyber space and the physical space with the stable location distribution of IP addresses. Thus, we propose a novel framework for user identification in cyber-physical space, which consists of three key steps: 1) modeling the location distribution of each IP address; 2) computing the co-occurrence with an inverted index to reduce the space and time cost; and 3) a learning-to-rank tactic to fuse user's features shared in both spaces to improve the accuracy. We conduct experiments to identify individual users from mobile query logs (generated in cyber space) and trajectory data (generated in physical space) to demonstrate the efficiency and effectiveness of our framework.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"38 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"User identification in cyber-physical space: a case study on mobile query logs and trajectories\",\"authors\":\"Tianyi Hao, Jingbo Zhou, Yunsheng Cheng, Longbo Huang, Haishan Wu\",\"doi\":\"10.1145/2996913.2997017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"User identification across domains draws lots of research effort in recent years. Although most of existing works focus on user identification in a single space, in this paper, we first try to identify users by fusing their activities in cyber space and physical space, which helps us obtain a comprehensive understanding about users' online behaviours as well as offline visitation. Out profound insight to tackle this problem is that we can build a connection between the cyber space and the physical space with the stable location distribution of IP addresses. Thus, we propose a novel framework for user identification in cyber-physical space, which consists of three key steps: 1) modeling the location distribution of each IP address; 2) computing the co-occurrence with an inverted index to reduce the space and time cost; and 3) a learning-to-rank tactic to fuse user's features shared in both spaces to improve the accuracy. We conduct experiments to identify individual users from mobile query logs (generated in cyber space) and trajectory data (generated in physical space) to demonstrate the efficiency and effectiveness of our framework.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"38 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2997017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2997017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

跨域用户识别是近年来研究的热点。虽然现有的研究大多集中在单个空间的用户识别,但在本文中,我们首先尝试通过融合用户在网络空间和物理空间的活动来识别用户,这有助于我们全面了解用户的在线行为和离线访问。我们解决这个问题的深刻见解是,我们可以通过IP地址的稳定位置分布,在网络空间和物理空间之间建立联系。因此,我们提出了一个新的网络物理空间用户识别框架,该框架包括三个关键步骤:1)建模每个IP地址的位置分布;2)与倒排索引计算共现,降低空间和时间成本;3)采用学习排序策略,融合两个空间共享的用户特征,提高准确率。我们进行了实验,从移动查询日志(在网络空间中生成)和轨迹数据(在物理空间中生成)中识别个人用户,以证明我们框架的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
User identification in cyber-physical space: a case study on mobile query logs and trajectories
User identification across domains draws lots of research effort in recent years. Although most of existing works focus on user identification in a single space, in this paper, we first try to identify users by fusing their activities in cyber space and physical space, which helps us obtain a comprehensive understanding about users' online behaviours as well as offline visitation. Out profound insight to tackle this problem is that we can build a connection between the cyber space and the physical space with the stable location distribution of IP addresses. Thus, we propose a novel framework for user identification in cyber-physical space, which consists of three key steps: 1) modeling the location distribution of each IP address; 2) computing the co-occurrence with an inverted index to reduce the space and time cost; and 3) a learning-to-rank tactic to fuse user's features shared in both spaces to improve the accuracy. We conduct experiments to identify individual users from mobile query logs (generated in cyber space) and trajectory data (generated in physical space) to demonstrate the efficiency and effectiveness of our framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信