{"title":"使用连续条件随机场从符号和数值变量预测F0轮廓","authors":"Raul Fernandez, Steve Minnis, B. Ramabhadran","doi":"10.1109/ICASSP.2012.6288948","DOIUrl":null,"url":null,"abstract":"Regression of continuous-valued variables as a function of both categorical and continuous predictors arises in some areas of speech processing, such as when predicting prosodic targets in a text-to-speech system. In this work we investigate the use of Continuous Conditional Random Fields (CCRF) to conditionally predict F0 targets from a series of s symbolic and numerical predictive features derived from text. We derive the training equations for the model using a Least-Squares-Error criterion within a supervised framework, and evaluate the proposed system using this objective criterion against other baseline models that can handle mixed inputs, such as regression trees and ensemble of regression trees.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"110 1","pages":"4621-4624"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of F0 contours from symbolic and numerical variables using continuous conditional random fields\",\"authors\":\"Raul Fernandez, Steve Minnis, B. Ramabhadran\",\"doi\":\"10.1109/ICASSP.2012.6288948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regression of continuous-valued variables as a function of both categorical and continuous predictors arises in some areas of speech processing, such as when predicting prosodic targets in a text-to-speech system. In this work we investigate the use of Continuous Conditional Random Fields (CCRF) to conditionally predict F0 targets from a series of s symbolic and numerical predictive features derived from text. We derive the training equations for the model using a Least-Squares-Error criterion within a supervised framework, and evaluate the proposed system using this objective criterion against other baseline models that can handle mixed inputs, such as regression trees and ensemble of regression trees.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"110 1\",\"pages\":\"4621-4624\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of F0 contours from symbolic and numerical variables using continuous conditional random fields
Regression of continuous-valued variables as a function of both categorical and continuous predictors arises in some areas of speech processing, such as when predicting prosodic targets in a text-to-speech system. In this work we investigate the use of Continuous Conditional Random Fields (CCRF) to conditionally predict F0 targets from a series of s symbolic and numerical predictive features derived from text. We derive the training equations for the model using a Least-Squares-Error criterion within a supervised framework, and evaluate the proposed system using this objective criterion against other baseline models that can handle mixed inputs, such as regression trees and ensemble of regression trees.