{"title":"更多扭曲的希尔伯特空间","authors":"Daniel Morales, J. Su'arez","doi":"10.5186/aasfm.2021.4653","DOIUrl":null,"url":null,"abstract":"We provide three new examples of twisted Hilbert spaces by considering properties that are \"close\" to Hilbert. We denote them $Z(\\mathcal J)$, $Z(\\mathcal S^2)$ and $Z(\\mathcal T_s^2)$. The first space is asymptotically Hilbertian but not weak Hilbert. On the opposite side, $Z(\\mathcal S^2)$ and $Z(\\mathcal T_s^2)$ are not asymptotically Hilbertian. Moreover, the space $Z(\\mathcal T_s^2)$ is a HAPpy space and the technique to prove it gives a \"twisted\" version of a theorem of Johnson and Szankowski (Ann. of Math. 176:1987--2001, 2012). This is, we can construct a nontrivial twisted Hilbert space such that the isomorphism constant from its $n$-dimensional subspaces to $\\ell_2^n$ grows to infinity as slowly as we wish when $n\\to \\infty$.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Some more twisted Hilbert spaces\",\"authors\":\"Daniel Morales, J. Su'arez\",\"doi\":\"10.5186/aasfm.2021.4653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide three new examples of twisted Hilbert spaces by considering properties that are \\\"close\\\" to Hilbert. We denote them $Z(\\\\mathcal J)$, $Z(\\\\mathcal S^2)$ and $Z(\\\\mathcal T_s^2)$. The first space is asymptotically Hilbertian but not weak Hilbert. On the opposite side, $Z(\\\\mathcal S^2)$ and $Z(\\\\mathcal T_s^2)$ are not asymptotically Hilbertian. Moreover, the space $Z(\\\\mathcal T_s^2)$ is a HAPpy space and the technique to prove it gives a \\\"twisted\\\" version of a theorem of Johnson and Szankowski (Ann. of Math. 176:1987--2001, 2012). This is, we can construct a nontrivial twisted Hilbert space such that the isomorphism constant from its $n$-dimensional subspaces to $\\\\ell_2^n$ grows to infinity as slowly as we wish when $n\\\\to \\\\infty$.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2021.4653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5186/aasfm.2021.4653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We provide three new examples of twisted Hilbert spaces by considering properties that are "close" to Hilbert. We denote them $Z(\mathcal J)$, $Z(\mathcal S^2)$ and $Z(\mathcal T_s^2)$. The first space is asymptotically Hilbertian but not weak Hilbert. On the opposite side, $Z(\mathcal S^2)$ and $Z(\mathcal T_s^2)$ are not asymptotically Hilbertian. Moreover, the space $Z(\mathcal T_s^2)$ is a HAPpy space and the technique to prove it gives a "twisted" version of a theorem of Johnson and Szankowski (Ann. of Math. 176:1987--2001, 2012). This is, we can construct a nontrivial twisted Hilbert space such that the isomorphism constant from its $n$-dimensional subspaces to $\ell_2^n$ grows to infinity as slowly as we wish when $n\to \infty$.