更多扭曲的希尔伯特空间

Daniel Morales, J. Su'arez
{"title":"更多扭曲的希尔伯特空间","authors":"Daniel Morales, J. Su'arez","doi":"10.5186/aasfm.2021.4653","DOIUrl":null,"url":null,"abstract":"We provide three new examples of twisted Hilbert spaces by considering properties that are \"close\" to Hilbert. We denote them $Z(\\mathcal J)$, $Z(\\mathcal S^2)$ and $Z(\\mathcal T_s^2)$. The first space is asymptotically Hilbertian but not weak Hilbert. On the opposite side, $Z(\\mathcal S^2)$ and $Z(\\mathcal T_s^2)$ are not asymptotically Hilbertian. Moreover, the space $Z(\\mathcal T_s^2)$ is a HAPpy space and the technique to prove it gives a \"twisted\" version of a theorem of Johnson and Szankowski (Ann. of Math. 176:1987--2001, 2012). This is, we can construct a nontrivial twisted Hilbert space such that the isomorphism constant from its $n$-dimensional subspaces to $\\ell_2^n$ grows to infinity as slowly as we wish when $n\\to \\infty$.","PeriodicalId":8426,"journal":{"name":"arXiv: Functional Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Some more twisted Hilbert spaces\",\"authors\":\"Daniel Morales, J. Su'arez\",\"doi\":\"10.5186/aasfm.2021.4653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide three new examples of twisted Hilbert spaces by considering properties that are \\\"close\\\" to Hilbert. We denote them $Z(\\\\mathcal J)$, $Z(\\\\mathcal S^2)$ and $Z(\\\\mathcal T_s^2)$. The first space is asymptotically Hilbertian but not weak Hilbert. On the opposite side, $Z(\\\\mathcal S^2)$ and $Z(\\\\mathcal T_s^2)$ are not asymptotically Hilbertian. Moreover, the space $Z(\\\\mathcal T_s^2)$ is a HAPpy space and the technique to prove it gives a \\\"twisted\\\" version of a theorem of Johnson and Szankowski (Ann. of Math. 176:1987--2001, 2012). This is, we can construct a nontrivial twisted Hilbert space such that the isomorphism constant from its $n$-dimensional subspaces to $\\\\ell_2^n$ grows to infinity as slowly as we wish when $n\\\\to \\\\infty$.\",\"PeriodicalId\":8426,\"journal\":{\"name\":\"arXiv: Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5186/aasfm.2021.4653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5186/aasfm.2021.4653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

通过考虑与Hilbert“接近”的性质,我们提供了三个扭曲Hilbert空间的新例子。分别表示为$Z(\mathcal J)$, $Z(\mathcal S^2)$和$Z(\mathcal T_s^2)$。第一个空间是渐近希尔伯特空间,但不是弱希尔伯特空间。另一方面,$Z(\mathcal S^2)$和$Z(\mathcal T_s^2)$不是渐近的希尔伯特式。此外,空间$Z(\mathcal T_s^2)$是一个HAPpy空间,证明它的技术给出了Johnson和Szankowski定理的“扭曲”版本。数学学报。176:1987—2001,2012)。这就是说,我们可以构造一个非平凡的扭曲希尔伯特空间,使得从它的$n$维子空间到$\ell_2^n$的同构常数随着我们希望的速度增长到无穷大,当$n\to \infty$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some more twisted Hilbert spaces
We provide three new examples of twisted Hilbert spaces by considering properties that are "close" to Hilbert. We denote them $Z(\mathcal J)$, $Z(\mathcal S^2)$ and $Z(\mathcal T_s^2)$. The first space is asymptotically Hilbertian but not weak Hilbert. On the opposite side, $Z(\mathcal S^2)$ and $Z(\mathcal T_s^2)$ are not asymptotically Hilbertian. Moreover, the space $Z(\mathcal T_s^2)$ is a HAPpy space and the technique to prove it gives a "twisted" version of a theorem of Johnson and Szankowski (Ann. of Math. 176:1987--2001, 2012). This is, we can construct a nontrivial twisted Hilbert space such that the isomorphism constant from its $n$-dimensional subspaces to $\ell_2^n$ grows to infinity as slowly as we wish when $n\to \infty$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信