B. Belhadj, A. Joubert, Zheng Li, R. Héliot, O. Temam
{"title":"持续的现实世界输入可以打开可选择的加速器设计","authors":"B. Belhadj, A. Joubert, Zheng Li, R. Héliot, O. Temam","doi":"10.1145/2485922.2485923","DOIUrl":null,"url":null,"abstract":"Motivated by energy constraints, future heterogeneous multi-cores may contain a variety of accelerators, each targeting a subset of the application spectrum. Beyond energy, the growing number of faults steers accelerator research towards fault-tolerant accelerators. In this article, we investigate a fault-tolerant and energy-efficient accelerator for signal processing applications. We depart from traditional designs by introducing an accelerator which relies on unary coding, a concept which is well adapted to the continuous real-world inputs of signal processing applications. Unary coding enables a number of atypical micro-architecture choices which bring down area cost and energy; moreover, unary coding provides graceful output degradation as the amount of transient faults increases. We introduce a configurable hybrid digital/analog micro-architecture capable of implementing a broad set of signal processing applications based on these concepts, together with a back-end optimizer which takes advantage of the special nature of these applications. For a set of five signal applications, we explore the different design tradeoffs and obtain an accelerator with an area cost of 1.63mm2. On average, this accelerator requires only 2.3% of the energy of an Atom-like core to implement similar tasks. We then evaluate the accelerator resilience to transient faults, and its ability to trade accuracy for energy savings.","PeriodicalId":20555,"journal":{"name":"Proceedings of the 40th Annual International Symposium on Computer Architecture","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"Continuous real-world inputs can open up alternative accelerator designs\",\"authors\":\"B. Belhadj, A. Joubert, Zheng Li, R. Héliot, O. Temam\",\"doi\":\"10.1145/2485922.2485923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by energy constraints, future heterogeneous multi-cores may contain a variety of accelerators, each targeting a subset of the application spectrum. Beyond energy, the growing number of faults steers accelerator research towards fault-tolerant accelerators. In this article, we investigate a fault-tolerant and energy-efficient accelerator for signal processing applications. We depart from traditional designs by introducing an accelerator which relies on unary coding, a concept which is well adapted to the continuous real-world inputs of signal processing applications. Unary coding enables a number of atypical micro-architecture choices which bring down area cost and energy; moreover, unary coding provides graceful output degradation as the amount of transient faults increases. We introduce a configurable hybrid digital/analog micro-architecture capable of implementing a broad set of signal processing applications based on these concepts, together with a back-end optimizer which takes advantage of the special nature of these applications. For a set of five signal applications, we explore the different design tradeoffs and obtain an accelerator with an area cost of 1.63mm2. On average, this accelerator requires only 2.3% of the energy of an Atom-like core to implement similar tasks. We then evaluate the accelerator resilience to transient faults, and its ability to trade accuracy for energy savings.\",\"PeriodicalId\":20555,\"journal\":{\"name\":\"Proceedings of the 40th Annual International Symposium on Computer Architecture\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2485922.2485923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2485922.2485923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Continuous real-world inputs can open up alternative accelerator designs
Motivated by energy constraints, future heterogeneous multi-cores may contain a variety of accelerators, each targeting a subset of the application spectrum. Beyond energy, the growing number of faults steers accelerator research towards fault-tolerant accelerators. In this article, we investigate a fault-tolerant and energy-efficient accelerator for signal processing applications. We depart from traditional designs by introducing an accelerator which relies on unary coding, a concept which is well adapted to the continuous real-world inputs of signal processing applications. Unary coding enables a number of atypical micro-architecture choices which bring down area cost and energy; moreover, unary coding provides graceful output degradation as the amount of transient faults increases. We introduce a configurable hybrid digital/analog micro-architecture capable of implementing a broad set of signal processing applications based on these concepts, together with a back-end optimizer which takes advantage of the special nature of these applications. For a set of five signal applications, we explore the different design tradeoffs and obtain an accelerator with an area cost of 1.63mm2. On average, this accelerator requires only 2.3% of the energy of an Atom-like core to implement similar tasks. We then evaluate the accelerator resilience to transient faults, and its ability to trade accuracy for energy savings.