快速磁重联使托卡马克电流剖面变平,对日冕的影响

A. Boozer
{"title":"快速磁重联使托卡马克电流剖面变平,对日冕的影响","authors":"A. Boozer","doi":"10.1063/5.0014107","DOIUrl":null,"url":null,"abstract":"During tokamak disruptions the profile of the net parallel current is observed to flatten on a time scale that is so fast that it must be due to a fast magnetic reconnection. After a fast magnetic reconnection has broken magnetic surfaces, a single magnetic field line covers an entire volume and not just a magnetic surface. The current profile, given by $K\\equiv\\mu_0j_{||}/B$, relaxes to a constant within that volume by Alfven waves propagating along the chaotic magnetic field lines. The time scale for this relaxation determines the commonly observed disruption phenomena of a current spike and a sudden drop in the plasma internal inductance. An efficient method for studying this relaxation is derived, which allows a better understanding of the information encoded in the current spike and the associated sudden drop in the plasma internal inductance. Implications for coronal heating are also discussed.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Flattening of the tokamak current profile by a fast magnetic reconnection with implications for the solar corona\",\"authors\":\"A. Boozer\",\"doi\":\"10.1063/5.0014107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During tokamak disruptions the profile of the net parallel current is observed to flatten on a time scale that is so fast that it must be due to a fast magnetic reconnection. After a fast magnetic reconnection has broken magnetic surfaces, a single magnetic field line covers an entire volume and not just a magnetic surface. The current profile, given by $K\\\\equiv\\\\mu_0j_{||}/B$, relaxes to a constant within that volume by Alfven waves propagating along the chaotic magnetic field lines. The time scale for this relaxation determines the commonly observed disruption phenomena of a current spike and a sudden drop in the plasma internal inductance. An efficient method for studying this relaxation is derived, which allows a better understanding of the information encoded in the current spike and the associated sudden drop in the plasma internal inductance. Implications for coronal heating are also discussed.\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0014107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0014107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在托卡马克中断期间,观察到净平行电流的剖面在一个时间尺度上变平,这个时间尺度如此之快,以至于它一定是由于快速的磁重联。在快速磁重联破坏磁表面后,单个磁场线覆盖整个体积,而不仅仅是磁表面。由$K\equiv\mu_0j_{||}/B$给出的电流剖面,在这个体积内,随着阿尔芬波沿着混沌磁场线传播而松弛为一个常数。这种弛豫的时间尺度决定了通常观察到的电流尖峰和等离子体内部电感突然下降的中断现象。推导了一种有效的研究这种弛豫的方法,可以更好地理解在电流尖峰中编码的信息和等离子体内部电感的相关突然下降。还讨论了日冕加热的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flattening of the tokamak current profile by a fast magnetic reconnection with implications for the solar corona
During tokamak disruptions the profile of the net parallel current is observed to flatten on a time scale that is so fast that it must be due to a fast magnetic reconnection. After a fast magnetic reconnection has broken magnetic surfaces, a single magnetic field line covers an entire volume and not just a magnetic surface. The current profile, given by $K\equiv\mu_0j_{||}/B$, relaxes to a constant within that volume by Alfven waves propagating along the chaotic magnetic field lines. The time scale for this relaxation determines the commonly observed disruption phenomena of a current spike and a sudden drop in the plasma internal inductance. An efficient method for studying this relaxation is derived, which allows a better understanding of the information encoded in the current spike and the associated sudden drop in the plasma internal inductance. Implications for coronal heating are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信