{"title":"快速磁重联使托卡马克电流剖面变平,对日冕的影响","authors":"A. Boozer","doi":"10.1063/5.0014107","DOIUrl":null,"url":null,"abstract":"During tokamak disruptions the profile of the net parallel current is observed to flatten on a time scale that is so fast that it must be due to a fast magnetic reconnection. After a fast magnetic reconnection has broken magnetic surfaces, a single magnetic field line covers an entire volume and not just a magnetic surface. The current profile, given by $K\\equiv\\mu_0j_{||}/B$, relaxes to a constant within that volume by Alfven waves propagating along the chaotic magnetic field lines. The time scale for this relaxation determines the commonly observed disruption phenomena of a current spike and a sudden drop in the plasma internal inductance. An efficient method for studying this relaxation is derived, which allows a better understanding of the information encoded in the current spike and the associated sudden drop in the plasma internal inductance. Implications for coronal heating are also discussed.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Flattening of the tokamak current profile by a fast magnetic reconnection with implications for the solar corona\",\"authors\":\"A. Boozer\",\"doi\":\"10.1063/5.0014107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During tokamak disruptions the profile of the net parallel current is observed to flatten on a time scale that is so fast that it must be due to a fast magnetic reconnection. After a fast magnetic reconnection has broken magnetic surfaces, a single magnetic field line covers an entire volume and not just a magnetic surface. The current profile, given by $K\\\\equiv\\\\mu_0j_{||}/B$, relaxes to a constant within that volume by Alfven waves propagating along the chaotic magnetic field lines. The time scale for this relaxation determines the commonly observed disruption phenomena of a current spike and a sudden drop in the plasma internal inductance. An efficient method for studying this relaxation is derived, which allows a better understanding of the information encoded in the current spike and the associated sudden drop in the plasma internal inductance. Implications for coronal heating are also discussed.\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0014107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0014107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flattening of the tokamak current profile by a fast magnetic reconnection with implications for the solar corona
During tokamak disruptions the profile of the net parallel current is observed to flatten on a time scale that is so fast that it must be due to a fast magnetic reconnection. After a fast magnetic reconnection has broken magnetic surfaces, a single magnetic field line covers an entire volume and not just a magnetic surface. The current profile, given by $K\equiv\mu_0j_{||}/B$, relaxes to a constant within that volume by Alfven waves propagating along the chaotic magnetic field lines. The time scale for this relaxation determines the commonly observed disruption phenomena of a current spike and a sudden drop in the plasma internal inductance. An efficient method for studying this relaxation is derived, which allows a better understanding of the information encoded in the current spike and the associated sudden drop in the plasma internal inductance. Implications for coronal heating are also discussed.