{"title":"神经网络状态中的量子纠缠","authors":"D. Deng, Xiaopeng Li, Xiaopeng Li, S. Sarma","doi":"10.1103/PhysRevX.7.021021","DOIUrl":null,"url":null,"abstract":"Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states is recently becoming highly desirable in the applications of machine learning techniques to quantum many-body physics. Here, we study the quantum entanglement properties of neural-network states, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing efficiently quantum states with massive entanglement. We further examine generic RBM states with random weight parameters. We find that their averaged entanglement entropy obeys volume-law scaling and meantime strongly deviates from the Page-entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural networks in representing quantum many-body states, which paves a novel way to bridge computer science based machine learning techniques to outstanding quantum condensed matter physics problems.","PeriodicalId":8438,"journal":{"name":"arXiv: Disordered Systems and Neural Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"320","resultStr":"{\"title\":\"Quantum Entanglement in Neural Network States\",\"authors\":\"D. Deng, Xiaopeng Li, Xiaopeng Li, S. Sarma\",\"doi\":\"10.1103/PhysRevX.7.021021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states is recently becoming highly desirable in the applications of machine learning techniques to quantum many-body physics. Here, we study the quantum entanglement properties of neural-network states, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing efficiently quantum states with massive entanglement. We further examine generic RBM states with random weight parameters. We find that their averaged entanglement entropy obeys volume-law scaling and meantime strongly deviates from the Page-entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural networks in representing quantum many-body states, which paves a novel way to bridge computer science based machine learning techniques to outstanding quantum condensed matter physics problems.\",\"PeriodicalId\":8438,\"journal\":{\"name\":\"arXiv: Disordered Systems and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"320\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevX.7.021021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevX.7.021021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states is recently becoming highly desirable in the applications of machine learning techniques to quantum many-body physics. Here, we study the quantum entanglement properties of neural-network states, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing efficiently quantum states with massive entanglement. We further examine generic RBM states with random weight parameters. We find that their averaged entanglement entropy obeys volume-law scaling and meantime strongly deviates from the Page-entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural networks in representing quantum many-body states, which paves a novel way to bridge computer science based machine learning techniques to outstanding quantum condensed matter physics problems.