{"title":"基于随机salp群算法的最优特征袋算法用于组织病理图像分析","authors":"V. Rachapudi, G. L. Devi","doi":"10.1504/ijiids.2020.10031678","DOIUrl":null,"url":null,"abstract":"Histopathological image classification is a prominent part of medical image classification. The classification of such images is a challenging task due to the presence of several morphological structures in the tissue images. Recently, bag-of-features method has been used for image classification tasks. However, bag-of-features method uses K-means algorithm to cluster the features, which is a sensitive algorithm towards the initial cluster centres and often traps into the local optima. Therefore, in this work, an efficient bag-of-features histopathological image classification method is presented using a novel variant of salp swarm algorithm termed as random salp swarm algorithm. The efficiency of the proposed variant has been validated against 20 benchmark functions. Further, the performance of the proposed method has been studied on blue histology image dataset and the results are compared with 5 other state-of-the-art meta-heuristic based bag-of-features methods. The experimental results demonstrate that the proposed method surpassed the other considered methods.","PeriodicalId":39658,"journal":{"name":"International Journal of Intelligent Information and Database Systems","volume":"6 1","pages":"339-355"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Optimal bag-of-features using random salp swarm algorithm for histopathological image analysis\",\"authors\":\"V. Rachapudi, G. L. Devi\",\"doi\":\"10.1504/ijiids.2020.10031678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Histopathological image classification is a prominent part of medical image classification. The classification of such images is a challenging task due to the presence of several morphological structures in the tissue images. Recently, bag-of-features method has been used for image classification tasks. However, bag-of-features method uses K-means algorithm to cluster the features, which is a sensitive algorithm towards the initial cluster centres and often traps into the local optima. Therefore, in this work, an efficient bag-of-features histopathological image classification method is presented using a novel variant of salp swarm algorithm termed as random salp swarm algorithm. The efficiency of the proposed variant has been validated against 20 benchmark functions. Further, the performance of the proposed method has been studied on blue histology image dataset and the results are compared with 5 other state-of-the-art meta-heuristic based bag-of-features methods. The experimental results demonstrate that the proposed method surpassed the other considered methods.\",\"PeriodicalId\":39658,\"journal\":{\"name\":\"International Journal of Intelligent Information and Database Systems\",\"volume\":\"6 1\",\"pages\":\"339-355\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Information and Database Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijiids.2020.10031678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijiids.2020.10031678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Optimal bag-of-features using random salp swarm algorithm for histopathological image analysis
Histopathological image classification is a prominent part of medical image classification. The classification of such images is a challenging task due to the presence of several morphological structures in the tissue images. Recently, bag-of-features method has been used for image classification tasks. However, bag-of-features method uses K-means algorithm to cluster the features, which is a sensitive algorithm towards the initial cluster centres and often traps into the local optima. Therefore, in this work, an efficient bag-of-features histopathological image classification method is presented using a novel variant of salp swarm algorithm termed as random salp swarm algorithm. The efficiency of the proposed variant has been validated against 20 benchmark functions. Further, the performance of the proposed method has been studied on blue histology image dataset and the results are compared with 5 other state-of-the-art meta-heuristic based bag-of-features methods. The experimental results demonstrate that the proposed method surpassed the other considered methods.
期刊介绍:
Intelligent information systems and intelligent database systems are a very dynamically developing field in computer sciences. IJIIDS provides a medium for exchanging scientific research and technological achievements accomplished by the international community. It focuses on research in applications of advanced intelligent technologies for data storing and processing in a wide-ranging context. The issues addressed by IJIIDS involve solutions of real-life problems, in which it is necessary to apply intelligent technologies for achieving effective results. The emphasis of the reported work is on new and original research and technological developments rather than reports on the application of existing technology to different sets of data.