脑神经技术的无线接口

Han-Joon Kim, J. S. Ho
{"title":"脑神经技术的无线接口","authors":"Han-Joon Kim, J. S. Ho","doi":"10.1098/rsta.2021.0020","DOIUrl":null,"url":null,"abstract":"Wireless interfaces enable brain-implanted devices to remotely interact with the external world. They are critical components in modern research and clinical neurotechnologies and play a central role in determining their overall size, lifetime and functionality. Wireless interfaces use a wide range of modalities—including radio-frequency fields, acoustic waves and light—to transfer energy and data to and from an implanted device. These forms of energy interact with living tissue through distinct mechanisms and therefore lead to systems with vastly different form factors, operating characteristics, and safety considerations. This paper reviews recent advances in the development of wireless interfaces for brain neurotechnologies. We summarize the requirements that state-of-the-art brain-implanted devices impose on the wireless interface, and discuss the working principles and applications of wireless interfaces based on each modality. We also investigate challenges associated with wireless brain neurotechnologies and discuss emerging solutions permitted by recent developments in electrical engineering and materials science. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.","PeriodicalId":20020,"journal":{"name":"Philosophical Transactions of the Royal Society A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Wireless interfaces for brain neurotechnologies\",\"authors\":\"Han-Joon Kim, J. S. Ho\",\"doi\":\"10.1098/rsta.2021.0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wireless interfaces enable brain-implanted devices to remotely interact with the external world. They are critical components in modern research and clinical neurotechnologies and play a central role in determining their overall size, lifetime and functionality. Wireless interfaces use a wide range of modalities—including radio-frequency fields, acoustic waves and light—to transfer energy and data to and from an implanted device. These forms of energy interact with living tissue through distinct mechanisms and therefore lead to systems with vastly different form factors, operating characteristics, and safety considerations. This paper reviews recent advances in the development of wireless interfaces for brain neurotechnologies. We summarize the requirements that state-of-the-art brain-implanted devices impose on the wireless interface, and discuss the working principles and applications of wireless interfaces based on each modality. We also investigate challenges associated with wireless brain neurotechnologies and discuss emerging solutions permitted by recent developments in electrical engineering and materials science. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.\",\"PeriodicalId\":20020,\"journal\":{\"name\":\"Philosophical Transactions of the Royal Society A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophical Transactions of the Royal Society A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rsta.2021.0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rsta.2021.0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无线接口使大脑植入设备能够与外部世界进行远程交互。它们是现代研究和临床神经技术的关键组成部分,在决定它们的总体尺寸、寿命和功能方面发挥着核心作用。无线接口使用多种模式——包括射频场、声波和光——在植入设备之间传递能量和数据。这些形式的能量通过不同的机制与活组织相互作用,因此产生了具有截然不同的外形因素、操作特性和安全考虑的系统。本文综述了脑神经技术无线接口的最新进展。我们总结了目前最先进的脑植入设备对无线接口的要求,并讨论了基于每种模式的无线接口的工作原理和应用。我们还研究了与无线脑神经技术相关的挑战,并讨论了电气工程和材料科学最新发展所允许的新兴解决方案。本文是主题“先进神经技术:将创新转化为健康和福祉”的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wireless interfaces for brain neurotechnologies
Wireless interfaces enable brain-implanted devices to remotely interact with the external world. They are critical components in modern research and clinical neurotechnologies and play a central role in determining their overall size, lifetime and functionality. Wireless interfaces use a wide range of modalities—including radio-frequency fields, acoustic waves and light—to transfer energy and data to and from an implanted device. These forms of energy interact with living tissue through distinct mechanisms and therefore lead to systems with vastly different form factors, operating characteristics, and safety considerations. This paper reviews recent advances in the development of wireless interfaces for brain neurotechnologies. We summarize the requirements that state-of-the-art brain-implanted devices impose on the wireless interface, and discuss the working principles and applications of wireless interfaces based on each modality. We also investigate challenges associated with wireless brain neurotechnologies and discuss emerging solutions permitted by recent developments in electrical engineering and materials science. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信