有限约化群的Sylow子群

IF 0.1 Q4 MATHEMATICS
Michel Enguehard, J. Michel
{"title":"有限约化群的Sylow子群","authors":"Michel Enguehard, J. Michel","doi":"10.21915/BIMAS.2018203","DOIUrl":null,"url":null,"abstract":"We describe the structure of Sylow {\\ell}-subgroups of a finite reduc-tive group G(Fq) when q $\\not\\equiv$ 0 (mod {\\ell}) that we find governed by a complex reflection group attached to G and {\\ell}, which depends on {\\ell} only through the set of cyclotomic factors of the generic order of G(Fq) whose value at q is divisible by {\\ell}. We also tackle the more general case G F where F is an isogeny whose a power is a Frobenius morphism.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"16 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2016-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The Sylow Subgroups of a Finite Reductive Group\",\"authors\":\"Michel Enguehard, J. Michel\",\"doi\":\"10.21915/BIMAS.2018203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the structure of Sylow {\\\\ell}-subgroups of a finite reduc-tive group G(Fq) when q $\\\\not\\\\equiv$ 0 (mod {\\\\ell}) that we find governed by a complex reflection group attached to G and {\\\\ell}, which depends on {\\\\ell} only through the set of cyclotomic factors of the generic order of G(Fq) whose value at q is divisible by {\\\\ell}. We also tackle the more general case G F where F is an isogeny whose a power is a Frobenius morphism.\",\"PeriodicalId\":43960,\"journal\":{\"name\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2016-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Institute of Mathematics Academia Sinica New Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21915/BIMAS.2018203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/BIMAS.2018203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

我们描述了有限约化群G(Fq)的Sylow {\ell}-子群的结构,当q $\ \不\等分$ 0 (mod {\ell})时,我们发现它由附在G和{\ell}上的复反射群所控制,该群仅依赖于{\ell},其值在q处可被{\ell}整除的G(Fq)的一般阶环切因子集。我们也处理更一般的情况gf,其中F是同基因,其幂是Frobenius态射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Sylow Subgroups of a Finite Reductive Group
We describe the structure of Sylow {\ell}-subgroups of a finite reduc-tive group G(Fq) when q $\not\equiv$ 0 (mod {\ell}) that we find governed by a complex reflection group attached to G and {\ell}, which depends on {\ell} only through the set of cyclotomic factors of the generic order of G(Fq) whose value at q is divisible by {\ell}. We also tackle the more general case G F where F is an isogeny whose a power is a Frobenius morphism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信