A. Arunachalam, S. Induja, V. Parthasarathy, P. Raghavan
{"title":"硼酸银钙作为化妆品中传统有机抗菌剂的更好替代品","authors":"A. Arunachalam, S. Induja, V. Parthasarathy, P. Raghavan","doi":"10.5267/j.ccl.2021.8.003","DOIUrl":null,"url":null,"abstract":"Microbes generally develop resistance towards organic antibacterial agents like ampicillin, Sulfonamides, methicillin, etc., and progressively new drugs are being invented to replace them. Hence, replacement of organic antibacterial agents with inorganic analogues requires constant research and the present investigation reports alternatives for conventional antimicrobial agents like methylparaben, diazolidinyl urea, etc., in the cosmetic products with silver incorporated calcium borates. The chemically synthesized silver-calcium borates have been analyzed for phase purity using powder XRD analysis, nature of bonding using FTIR vibrations, and morphology using SEM. The antibacterial and antifungal studies were carried out for the novel inorganic silver-calcium borates incorporated cosmetic products. The products were also subjected to thermal & photostability studies and found to be comparable with that of commercially available products. A minimum quantity of 3 ppm of silver-calcium borate concentration was required to bring about nearly 100% bacterial reduction in the cosmetic products.","PeriodicalId":10942,"journal":{"name":"Current Chemistry Letters","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Silver-calcium-borates as better replacement for conventional organic antimicrobials in cosmetic products\",\"authors\":\"A. Arunachalam, S. Induja, V. Parthasarathy, P. Raghavan\",\"doi\":\"10.5267/j.ccl.2021.8.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbes generally develop resistance towards organic antibacterial agents like ampicillin, Sulfonamides, methicillin, etc., and progressively new drugs are being invented to replace them. Hence, replacement of organic antibacterial agents with inorganic analogues requires constant research and the present investigation reports alternatives for conventional antimicrobial agents like methylparaben, diazolidinyl urea, etc., in the cosmetic products with silver incorporated calcium borates. The chemically synthesized silver-calcium borates have been analyzed for phase purity using powder XRD analysis, nature of bonding using FTIR vibrations, and morphology using SEM. The antibacterial and antifungal studies were carried out for the novel inorganic silver-calcium borates incorporated cosmetic products. The products were also subjected to thermal & photostability studies and found to be comparable with that of commercially available products. A minimum quantity of 3 ppm of silver-calcium borate concentration was required to bring about nearly 100% bacterial reduction in the cosmetic products.\",\"PeriodicalId\":10942,\"journal\":{\"name\":\"Current Chemistry Letters\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Chemistry Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.ccl.2021.8.003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Chemistry Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.ccl.2021.8.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Silver-calcium-borates as better replacement for conventional organic antimicrobials in cosmetic products
Microbes generally develop resistance towards organic antibacterial agents like ampicillin, Sulfonamides, methicillin, etc., and progressively new drugs are being invented to replace them. Hence, replacement of organic antibacterial agents with inorganic analogues requires constant research and the present investigation reports alternatives for conventional antimicrobial agents like methylparaben, diazolidinyl urea, etc., in the cosmetic products with silver incorporated calcium borates. The chemically synthesized silver-calcium borates have been analyzed for phase purity using powder XRD analysis, nature of bonding using FTIR vibrations, and morphology using SEM. The antibacterial and antifungal studies were carried out for the novel inorganic silver-calcium borates incorporated cosmetic products. The products were also subjected to thermal & photostability studies and found to be comparable with that of commercially available products. A minimum quantity of 3 ppm of silver-calcium borate concentration was required to bring about nearly 100% bacterial reduction in the cosmetic products.
期刊介绍:
The "Current Chemistry Letters" is a peer-reviewed international journal which aims to publish all the current and outstanding research articles, reviews and letters in chemistry including analytical chemistry, green chemistry, inorganic chemistry, organic chemistry, physical chemistry, etc. This journal is dedicated to serve all academic and industrial researchers and scientists who are expert in all major advances in chemistry research. The journal aims to provide the most complete and reliable source of information on current developments in these fields. The emphasis will be on publishing quality articles rapidly and openly available to researchers worldwide. Please note readers are free to read, download, copy, distribute, print, search, or link to the full texts of articles published on this journal. Current Chemistry Letters is an open access journal, which provides instant access to the full text of research papers without any need for a subscription to the journal where the papers are published. Therefore, anyone has the opportunity to copy, use, redistribute, transmit/display the work publicly and to distribute derivative works, in any sort of digital form for any responsible purpose, subject to appropriate attribution of authorship. Authors who publish their articles may also maintain the copyright of their articles.