基于修剪全卷积网络的基准数据集结构裂纹检测

Xinyu. Ye, T. Jin, Z. X. Li, S. Ma, Yi Ding, Y. Ou
{"title":"基于修剪全卷积网络的基准数据集结构裂纹检测","authors":"Xinyu. Ye, T. Jin, Z. X. Li, S. Ma, Yi Ding, Y. Ou","doi":"10.1061/(ASCE)ST.1943-541X.0003140","DOIUrl":null,"url":null,"abstract":"AbstractCrack inspection is a crucial but labor-intensive work of maintenance for in-service bridges. Recently, the development of fully convolutional network (FCN) provides pixel-wise semantic seg...","PeriodicalId":17068,"journal":{"name":"Journal of Structural Engineering-asce","volume":"59 1","pages":"04721008"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Structural Crack Detection from Benchmark Data Sets Using Pruned Fully Convolutional Networks\",\"authors\":\"Xinyu. Ye, T. Jin, Z. X. Li, S. Ma, Yi Ding, Y. Ou\",\"doi\":\"10.1061/(ASCE)ST.1943-541X.0003140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractCrack inspection is a crucial but labor-intensive work of maintenance for in-service bridges. Recently, the development of fully convolutional network (FCN) provides pixel-wise semantic seg...\",\"PeriodicalId\":17068,\"journal\":{\"name\":\"Journal of Structural Engineering-asce\",\"volume\":\"59 1\",\"pages\":\"04721008\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Engineering-asce\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1061/(ASCE)ST.1943-541X.0003140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Engineering-asce","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1061/(ASCE)ST.1943-541X.0003140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

摘要裂缝检测是在役桥梁维修的一项关键工作,也是一项劳动强度较大的工作。最近,全卷积网络(FCN)的发展提供了逐像素的语义隔离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Crack Detection from Benchmark Data Sets Using Pruned Fully Convolutional Networks
AbstractCrack inspection is a crucial but labor-intensive work of maintenance for in-service bridges. Recently, the development of fully convolutional network (FCN) provides pixel-wise semantic seg...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信