Mengu Sukan, Carmine Elvezio, Ohan Oda, Steven K. Feiner, B. Tversky
{"title":"顶架:引导用户到一组受限的观看位置和方向的可视化技术","authors":"Mengu Sukan, Carmine Elvezio, Ohan Oda, Steven K. Feiner, B. Tversky","doi":"10.1145/2642918.2647417","DOIUrl":null,"url":null,"abstract":"Many tasks in real or virtual environments require users to view a target object or location from one of a set of strategic viewpoints to see it in context, avoid occlusions, or view it at an appropriate angle or distance. We introduce ParaFrustum, a geometric construct that represents this set of strategic viewpoints and viewing directions. ParaFrustum is inspired by the look-from and look-at points of a computer graphics camera specification, which precisely delineate a location for the camera and a direction in which it looks. We generalize this approach by defining a ParaFrustum in terms of a look-from volume and a look-at volume, which establish constraints on a range of acceptable locations for the user's eyes and a range of acceptable angles in which the user's head can be oriented. Providing tolerance in the allowable viewing positions and directions avoids burdening the user with the need to assume a tightly constrained 6DoF pose when it is not required by the task. We describe two visualization techniques for virtual or augmented reality that guide a user to assume one of the poses defined by a ParaFrustum, and present the results of a user study measuring the performance of these techniques. The study shows that the constraints of a tightly constrained ParaFrustum (e.g., approximating a conventional camera frustum) require significantly more time to satisfy than those of a loosely constrained one. The study also reveals interesting differences in participant trajectories in response to the two techniques.","PeriodicalId":20543,"journal":{"name":"Proceedings of the 27th annual ACM symposium on User interface software and technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"ParaFrustum: visualization techniques for guiding a user to a constrained set of viewing positions and orientations\",\"authors\":\"Mengu Sukan, Carmine Elvezio, Ohan Oda, Steven K. Feiner, B. Tversky\",\"doi\":\"10.1145/2642918.2647417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many tasks in real or virtual environments require users to view a target object or location from one of a set of strategic viewpoints to see it in context, avoid occlusions, or view it at an appropriate angle or distance. We introduce ParaFrustum, a geometric construct that represents this set of strategic viewpoints and viewing directions. ParaFrustum is inspired by the look-from and look-at points of a computer graphics camera specification, which precisely delineate a location for the camera and a direction in which it looks. We generalize this approach by defining a ParaFrustum in terms of a look-from volume and a look-at volume, which establish constraints on a range of acceptable locations for the user's eyes and a range of acceptable angles in which the user's head can be oriented. Providing tolerance in the allowable viewing positions and directions avoids burdening the user with the need to assume a tightly constrained 6DoF pose when it is not required by the task. We describe two visualization techniques for virtual or augmented reality that guide a user to assume one of the poses defined by a ParaFrustum, and present the results of a user study measuring the performance of these techniques. The study shows that the constraints of a tightly constrained ParaFrustum (e.g., approximating a conventional camera frustum) require significantly more time to satisfy than those of a loosely constrained one. The study also reveals interesting differences in participant trajectories in response to the two techniques.\",\"PeriodicalId\":20543,\"journal\":{\"name\":\"Proceedings of the 27th annual ACM symposium on User interface software and technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th annual ACM symposium on User interface software and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2642918.2647417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th annual ACM symposium on User interface software and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2642918.2647417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ParaFrustum: visualization techniques for guiding a user to a constrained set of viewing positions and orientations
Many tasks in real or virtual environments require users to view a target object or location from one of a set of strategic viewpoints to see it in context, avoid occlusions, or view it at an appropriate angle or distance. We introduce ParaFrustum, a geometric construct that represents this set of strategic viewpoints and viewing directions. ParaFrustum is inspired by the look-from and look-at points of a computer graphics camera specification, which precisely delineate a location for the camera and a direction in which it looks. We generalize this approach by defining a ParaFrustum in terms of a look-from volume and a look-at volume, which establish constraints on a range of acceptable locations for the user's eyes and a range of acceptable angles in which the user's head can be oriented. Providing tolerance in the allowable viewing positions and directions avoids burdening the user with the need to assume a tightly constrained 6DoF pose when it is not required by the task. We describe two visualization techniques for virtual or augmented reality that guide a user to assume one of the poses defined by a ParaFrustum, and present the results of a user study measuring the performance of these techniques. The study shows that the constraints of a tightly constrained ParaFrustum (e.g., approximating a conventional camera frustum) require significantly more time to satisfy than those of a loosely constrained one. The study also reveals interesting differences in participant trajectories in response to the two techniques.