用于锂离子SOH预测的自编码器LSTM:不同基准数据集的比较研究

Paul Audin, I. Jorge, T. Mesbahi, Ahmed Samet, F. D. Beuvron, R. Boné
{"title":"用于锂离子SOH预测的自编码器LSTM:不同基准数据集的比较研究","authors":"Paul Audin, I. Jorge, T. Mesbahi, Ahmed Samet, F. D. Beuvron, R. Boné","doi":"10.1109/ICMLA52953.2021.00246","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries are used in most battery powered devices. Today’s research on Lithium-ion batteries mainly focuses on better energy management strategies and predictive maintenance. In this paper, a new approach based on auto-encoders and long short-term memory neural networks applied to usage data (voltage, current, temperature) is used to make a State of Health prediction. Encouraging results are obtained when conducting tests on various battery ageing datasets published by Sandia National Laboratories, the Massachusetts Institute of Technology and NASA’s Prognostics Center of Excellence.","PeriodicalId":6750,"journal":{"name":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"5 1","pages":"1529-1536"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Auto-encoder LSTM for Li-ion SOH prediction: a comparative study on various benchmark datasets\",\"authors\":\"Paul Audin, I. Jorge, T. Mesbahi, Ahmed Samet, F. D. Beuvron, R. Boné\",\"doi\":\"10.1109/ICMLA52953.2021.00246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion batteries are used in most battery powered devices. Today’s research on Lithium-ion batteries mainly focuses on better energy management strategies and predictive maintenance. In this paper, a new approach based on auto-encoders and long short-term memory neural networks applied to usage data (voltage, current, temperature) is used to make a State of Health prediction. Encouraging results are obtained when conducting tests on various battery ageing datasets published by Sandia National Laboratories, the Massachusetts Institute of Technology and NASA’s Prognostics Center of Excellence.\",\"PeriodicalId\":6750,\"journal\":{\"name\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"volume\":\"5 1\",\"pages\":\"1529-1536\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA52953.2021.00246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA52953.2021.00246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

锂离子电池用于大多数电池供电的设备。目前对锂离子电池的研究主要集中在更好的能量管理策略和预测性维护上。本文提出了一种基于自编码器和长短期记忆神经网络的新方法,将其应用于使用数据(电压、电流、温度)进行健康状态预测。在对桑迪亚国家实验室、麻省理工学院和美国宇航局卓越预测中心发布的各种电池老化数据集进行测试时,获得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Auto-encoder LSTM for Li-ion SOH prediction: a comparative study on various benchmark datasets
Lithium-ion batteries are used in most battery powered devices. Today’s research on Lithium-ion batteries mainly focuses on better energy management strategies and predictive maintenance. In this paper, a new approach based on auto-encoders and long short-term memory neural networks applied to usage data (voltage, current, temperature) is used to make a State of Health prediction. Encouraging results are obtained when conducting tests on various battery ageing datasets published by Sandia National Laboratories, the Massachusetts Institute of Technology and NASA’s Prognostics Center of Excellence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信