使用Log-Skew正态共享弱点的生存时间依赖性建模

IF 0.6 Q4 STATISTICS & PROBABILITY
Sukhmani Sidhu, Suresh K. Sharma, Kanchan Jain
{"title":"使用Log-Skew正态共享弱点的生存时间依赖性建模","authors":"Sukhmani Sidhu, Suresh K. Sharma, Kanchan Jain","doi":"10.17713/ajs.v52i4.1481","DOIUrl":null,"url":null,"abstract":"In survival studies, event times under a common influence are often grouped together in clusters. The association between and within these clusters can be studied using frailty models where randomness in the data or heterogeneity arising due to unknown covariates is described using a frailty variable. In shared frailty models, frailty value is common or shared for all observations within a cluster while it is conditionally independent for different clusters. In this article, we consider a model whose baseline distribution is Weibull and shared frailties follow log skew-normal distribution. This distribution increases flexibility of the model as it allows the frailty term to be positively or negatively skewed and estimation of skewness parameter enables us to comment on dependence structure of the random component. A simulation study is performed and Bayesian estimates of treatment effects, variance and skewness of frailty term are obtained using Metropolis-Hastings algorithm. It is shown that while bias and expected loss for estimates of all parameters reduce as dataset size increases, frailty parameters are more efficiently estimated when the random component is considered to be skewed. The model is also applied to two real-life datasets where positive and negative skewness is observed in the frailty term.","PeriodicalId":51761,"journal":{"name":"Austrian Journal of Statistics","volume":"13 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Dependence in Survival Times using Log-Skew Normal Shared Frailties\",\"authors\":\"Sukhmani Sidhu, Suresh K. Sharma, Kanchan Jain\",\"doi\":\"10.17713/ajs.v52i4.1481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In survival studies, event times under a common influence are often grouped together in clusters. The association between and within these clusters can be studied using frailty models where randomness in the data or heterogeneity arising due to unknown covariates is described using a frailty variable. In shared frailty models, frailty value is common or shared for all observations within a cluster while it is conditionally independent for different clusters. In this article, we consider a model whose baseline distribution is Weibull and shared frailties follow log skew-normal distribution. This distribution increases flexibility of the model as it allows the frailty term to be positively or negatively skewed and estimation of skewness parameter enables us to comment on dependence structure of the random component. A simulation study is performed and Bayesian estimates of treatment effects, variance and skewness of frailty term are obtained using Metropolis-Hastings algorithm. It is shown that while bias and expected loss for estimates of all parameters reduce as dataset size increases, frailty parameters are more efficiently estimated when the random component is considered to be skewed. The model is also applied to two real-life datasets where positive and negative skewness is observed in the frailty term.\",\"PeriodicalId\":51761,\"journal\":{\"name\":\"Austrian Journal of Statistics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Austrian Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17713/ajs.v52i4.1481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austrian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17713/ajs.v52i4.1481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在生存研究中,受共同影响的事件时间通常被分组在一起。这些集群之间和集群内部的关联可以使用脆弱性模型来研究,其中数据中的随机性或未知协变量引起的异质性使用脆弱性变量来描述。在共享脆弱性模型中,脆弱性值对于集群内的所有观测值是共同的或共享的,而对于不同的集群,脆弱性值是有条件独立的。本文考虑一个基线分布为威布尔分布,共享脆弱性服从对数偏态-正态分布的模型。这种分布增加了模型的灵活性,因为它允许脆弱项正或负偏斜,偏度参数的估计使我们能够评论随机分量的依赖结构。通过仿真研究,利用Metropolis-Hastings算法得到了治疗效果、方差和偏度的贝叶斯估计。研究表明,虽然随着数据集大小的增加,所有参数估计的偏差和预期损失都会减少,但当随机成分被认为是偏斜的时候,脆弱参数的估计会更有效。该模型还应用于两个实际数据集,其中在脆弱性项中观察到正偏度和负偏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Dependence in Survival Times using Log-Skew Normal Shared Frailties
In survival studies, event times under a common influence are often grouped together in clusters. The association between and within these clusters can be studied using frailty models where randomness in the data or heterogeneity arising due to unknown covariates is described using a frailty variable. In shared frailty models, frailty value is common or shared for all observations within a cluster while it is conditionally independent for different clusters. In this article, we consider a model whose baseline distribution is Weibull and shared frailties follow log skew-normal distribution. This distribution increases flexibility of the model as it allows the frailty term to be positively or negatively skewed and estimation of skewness parameter enables us to comment on dependence structure of the random component. A simulation study is performed and Bayesian estimates of treatment effects, variance and skewness of frailty term are obtained using Metropolis-Hastings algorithm. It is shown that while bias and expected loss for estimates of all parameters reduce as dataset size increases, frailty parameters are more efficiently estimated when the random component is considered to be skewed. The model is also applied to two real-life datasets where positive and negative skewness is observed in the frailty term.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Austrian Journal of Statistics
Austrian Journal of Statistics STATISTICS & PROBABILITY-
CiteScore
1.10
自引率
0.00%
发文量
30
审稿时长
24 weeks
期刊介绍: The Austrian Journal of Statistics is an open-access journal (without any fees) with a long history and is published approximately quarterly by the Austrian Statistical Society. Its general objective is to promote and extend the use of statistical methods in all kind of theoretical and applied disciplines. The Austrian Journal of Statistics is indexed in many data bases, such as Scopus (by Elsevier), Web of Science - ESCI by Clarivate Analytics (formely Thompson & Reuters), DOAJ, Scimago, and many more. The current estimated impact factor (via Publish or Perish) is 0.775, see HERE, or even more indices HERE. Austrian Journal of Statistics ISNN number is 1026597X Original papers and review articles in English will be published in the Austrian Journal of Statistics if judged consistently with these general aims. All papers will be refereed. Special topics sections will appear from time to time. Each section will have as a theme a specialized area of statistical application, theory, or methodology. Technical notes or problems for considerations under Shorter Communications are also invited. A special section is reserved for book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信