一阶导数为幂非线性的多维偏微分方程

IF 0.5 Q3 MATHEMATICS
I. V. Rakhmelevich
{"title":"一阶导数为幂非线性的多维偏微分方程","authors":"I. V. Rakhmelevich","doi":"10.13108/2017-9-1-98","DOIUrl":null,"url":null,"abstract":"We consider a class of multi-dimensional partial differential equations involving a linear differential operator of arbitrary order and a power nonlinearity in the first derivatives. Under some additional assumptions for this operator, we study the solutions of multi-dimensional travelling waves that depend on some linear combinations of the original variables. The original equation is transformed to a reduced one, which can be solved by the separation of variables. Solutions of the reduced equation are found for the cases of additive, multiplicative and combined separation of variables.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"112 1","pages":"98-108"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On multi-dimensional partial differential equations with power nonlinearities in first derivatives\",\"authors\":\"I. V. Rakhmelevich\",\"doi\":\"10.13108/2017-9-1-98\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a class of multi-dimensional partial differential equations involving a linear differential operator of arbitrary order and a power nonlinearity in the first derivatives. Under some additional assumptions for this operator, we study the solutions of multi-dimensional travelling waves that depend on some linear combinations of the original variables. The original equation is transformed to a reduced one, which can be solved by the separation of variables. Solutions of the reduced equation are found for the cases of additive, multiplicative and combined separation of variables.\",\"PeriodicalId\":43644,\"journal\":{\"name\":\"Ufa Mathematical Journal\",\"volume\":\"112 1\",\"pages\":\"98-108\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ufa Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13108/2017-9-1-98\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-1-98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

考虑一类多维偏微分方程,其中包含任意阶线性微分算子和一阶幂非线性。在此算子的一些附加假设下,我们研究了依赖于原始变量的某些线性组合的多维行波的解。将原方程转化为可通过分离变量法求解的简化方程。给出了加性分离、乘性分离和组合分离情况下的简化方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On multi-dimensional partial differential equations with power nonlinearities in first derivatives
We consider a class of multi-dimensional partial differential equations involving a linear differential operator of arbitrary order and a power nonlinearity in the first derivatives. Under some additional assumptions for this operator, we study the solutions of multi-dimensional travelling waves that depend on some linear combinations of the original variables. The original equation is transformed to a reduced one, which can be solved by the separation of variables. Solutions of the reduced equation are found for the cases of additive, multiplicative and combined separation of variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信