双摆桥式起重机非线性系统辨识的改进多元优化算法

J. J. Jui, Mohd Ashraf Ahmad, M. Rashid
{"title":"双摆桥式起重机非线性系统辨识的改进多元优化算法","authors":"J. J. Jui, Mohd Ashraf Ahmad, M. Rashid","doi":"10.1109/SCOReD53546.2021.9652744","DOIUrl":null,"url":null,"abstract":"This paper presents the identification of double pendulum overhead crane (DPOC) plant based on the hybrid Multi-Verse Optimizer with Sine Cosine Algorithm (HMVOSCA) using the continuous-time Hammerstein model. In the HMVOSCA algorithm, the new position updating mechanism of the traditional MVO method is modified based on the sine function and cosine function which is taken from the Sine Cosine Algorithm (SCA). Moreover, an average position is chosen by computing the mean between the current position and the current best position obtained so far. These modifications are mainly for balancing exploration and exploitation and escaping from local optima and expected better identification accuracy of the DPOC plant. In the Hammerstein model identification, a continuous-time linear subsystem is used, which is more suitable for representing any real plant. The HMVOSCA algorithm is used to tune the linear and nonlinear parameters to reduce the gap between the estimated results and the actual results. The efficiency of the proposed HMVOSCA algorithm is evaluated using the convergence curve, parameter estimation error, bode plot, function plot, and Wilcoxon's test method. The experimental findings illustrate that the HMVOSCA algorithm can identify a Hammerstein model that generates an estimated output like the actual DPOC system output. Moreover, the identified results also show that the HMVOSCA algorithm outperforms other existing metaheuristics algorithms.","PeriodicalId":6762,"journal":{"name":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","volume":"18 1","pages":"212-217"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Multi-Verse Optimizer for Nonlinear System Identification of a Double Pendulum Overhead Crane\",\"authors\":\"J. J. Jui, Mohd Ashraf Ahmad, M. Rashid\",\"doi\":\"10.1109/SCOReD53546.2021.9652744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the identification of double pendulum overhead crane (DPOC) plant based on the hybrid Multi-Verse Optimizer with Sine Cosine Algorithm (HMVOSCA) using the continuous-time Hammerstein model. In the HMVOSCA algorithm, the new position updating mechanism of the traditional MVO method is modified based on the sine function and cosine function which is taken from the Sine Cosine Algorithm (SCA). Moreover, an average position is chosen by computing the mean between the current position and the current best position obtained so far. These modifications are mainly for balancing exploration and exploitation and escaping from local optima and expected better identification accuracy of the DPOC plant. In the Hammerstein model identification, a continuous-time linear subsystem is used, which is more suitable for representing any real plant. The HMVOSCA algorithm is used to tune the linear and nonlinear parameters to reduce the gap between the estimated results and the actual results. The efficiency of the proposed HMVOSCA algorithm is evaluated using the convergence curve, parameter estimation error, bode plot, function plot, and Wilcoxon's test method. The experimental findings illustrate that the HMVOSCA algorithm can identify a Hammerstein model that generates an estimated output like the actual DPOC system output. Moreover, the identified results also show that the HMVOSCA algorithm outperforms other existing metaheuristics algorithms.\",\"PeriodicalId\":6762,\"journal\":{\"name\":\"2021 IEEE 19th Student Conference on Research and Development (SCOReD)\",\"volume\":\"18 1\",\"pages\":\"212-217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 19th Student Conference on Research and Development (SCOReD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCOReD53546.2021.9652744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCOReD53546.2021.9652744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用连续时间Hammerstein模型,提出了一种基于正弦余弦算法混合多维优化器(HMVOSCA)的双摆桥式起重机(DPOC)装置辨识方法。在HMVOSCA算法中,基于从正余弦算法(SCA)中提取的正弦函数和余弦函数,对传统MVO方法的新的位置更新机制进行了改进。此外,通过计算当前位置与当前最佳位置之间的平均值来选择平均位置。这些修改主要是为了平衡勘探开发和摆脱局部最优,期望提高DPOC工厂的识别精度。在Hammerstein模型辨识中,采用连续时间线性子系统,更适合于表示任何真实对象。利用HMVOSCA算法对线性和非线性参数进行调整,减小估计结果与实际结果之间的差距。采用收敛曲线法、参数估计误差法、波德图法、函数图法和Wilcoxon检验法对该算法的有效性进行了评价。实验结果表明,HMVOSCA算法可以识别出产生与实际DPOC系统输出相似的估计输出的Hammerstein模型。此外,识别结果还表明,HMVOSCA算法优于其他现有的元启发式算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Multi-Verse Optimizer for Nonlinear System Identification of a Double Pendulum Overhead Crane
This paper presents the identification of double pendulum overhead crane (DPOC) plant based on the hybrid Multi-Verse Optimizer with Sine Cosine Algorithm (HMVOSCA) using the continuous-time Hammerstein model. In the HMVOSCA algorithm, the new position updating mechanism of the traditional MVO method is modified based on the sine function and cosine function which is taken from the Sine Cosine Algorithm (SCA). Moreover, an average position is chosen by computing the mean between the current position and the current best position obtained so far. These modifications are mainly for balancing exploration and exploitation and escaping from local optima and expected better identification accuracy of the DPOC plant. In the Hammerstein model identification, a continuous-time linear subsystem is used, which is more suitable for representing any real plant. The HMVOSCA algorithm is used to tune the linear and nonlinear parameters to reduce the gap between the estimated results and the actual results. The efficiency of the proposed HMVOSCA algorithm is evaluated using the convergence curve, parameter estimation error, bode plot, function plot, and Wilcoxon's test method. The experimental findings illustrate that the HMVOSCA algorithm can identify a Hammerstein model that generates an estimated output like the actual DPOC system output. Moreover, the identified results also show that the HMVOSCA algorithm outperforms other existing metaheuristics algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信