{"title":"柚皮苷通过miR- 126/GSK-3β/β-catenin信号通路减轻急性心肌缺血-再灌注损伤","authors":"Xiuhui Guo, Qinghong Ji, Mei Wu, Weihong Ma","doi":"10.1590/acb370102","DOIUrl":null,"url":null,"abstract":"ABSTRACT Introduction: Myocardial ischemia-reperfusion (I/R) injury is one of the mechanisms contributing to the high mortality rate of acute myocardial infarction. Purpose: This study intended to study the role of naringin in cardiac I/R injury. Methods: AC16 cells (human cardiomyocyte cell line) were subjected to oxygen-glucose deprivation/recovery (OGD/R) treatment and/or naringin pretreatment. Then, the apoptosis was examined by flow cytometry and Western blotting. The concentration of IL-6, IL-8 and TNF-α was measured by enzyme-linked immunosorbent assay (ELISA) kits. How naringin influenced microRNA expression was examined by microarrays and quantitative real-time polymerase chain reaction (qRT-PCR). Dual luciferase reporter assay was employed to evaluate the interaction between miR-126 and GSK-3β. The GSK-3β/β-catenin signaling pathway was examined by Western blotting. Finally, rat myocardial I/R model was created to examine the effects of naringin in vivo. Results: Naringin pretreatment significantly decreased the cytokine release and apoptosis of cardiomyocytes exposed to OGD/R. Bioinformatical analysis revealed that naringin upregulated miR-126 expression considerably. Also, it was found that miR-126 can bind GSK-3β and downregulate its expression, suggesting that naringin could decrease GSK-3β activity. Next, we discovered that naringin increased β-catenin activity in cardiomyocytes treated with OGD/R by inhibiting GSK-3β expression. Our animal experiments showed that naringin pre-treatment or miR-126 agomir alleviated myocardial I/R. Conclusions: Naringin preconditioning can reduce myocardial I/R injury via regulating miR-126/GSK-3β/β-catenin signaling pathway, and this chemical can be used to treat acute myocardial infarction.","PeriodicalId":6993,"journal":{"name":"Acta Cirúrgica Brasileira","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Naringin attenuates acute myocardial ischemia-reperfusion injury via miR- 126/GSK-3β/β-catenin signaling pathway\",\"authors\":\"Xiuhui Guo, Qinghong Ji, Mei Wu, Weihong Ma\",\"doi\":\"10.1590/acb370102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Introduction: Myocardial ischemia-reperfusion (I/R) injury is one of the mechanisms contributing to the high mortality rate of acute myocardial infarction. Purpose: This study intended to study the role of naringin in cardiac I/R injury. Methods: AC16 cells (human cardiomyocyte cell line) were subjected to oxygen-glucose deprivation/recovery (OGD/R) treatment and/or naringin pretreatment. Then, the apoptosis was examined by flow cytometry and Western blotting. The concentration of IL-6, IL-8 and TNF-α was measured by enzyme-linked immunosorbent assay (ELISA) kits. How naringin influenced microRNA expression was examined by microarrays and quantitative real-time polymerase chain reaction (qRT-PCR). Dual luciferase reporter assay was employed to evaluate the interaction between miR-126 and GSK-3β. The GSK-3β/β-catenin signaling pathway was examined by Western blotting. Finally, rat myocardial I/R model was created to examine the effects of naringin in vivo. Results: Naringin pretreatment significantly decreased the cytokine release and apoptosis of cardiomyocytes exposed to OGD/R. Bioinformatical analysis revealed that naringin upregulated miR-126 expression considerably. Also, it was found that miR-126 can bind GSK-3β and downregulate its expression, suggesting that naringin could decrease GSK-3β activity. Next, we discovered that naringin increased β-catenin activity in cardiomyocytes treated with OGD/R by inhibiting GSK-3β expression. Our animal experiments showed that naringin pre-treatment or miR-126 agomir alleviated myocardial I/R. Conclusions: Naringin preconditioning can reduce myocardial I/R injury via regulating miR-126/GSK-3β/β-catenin signaling pathway, and this chemical can be used to treat acute myocardial infarction.\",\"PeriodicalId\":6993,\"journal\":{\"name\":\"Acta Cirúrgica Brasileira\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Cirúrgica Brasileira\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/acb370102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Cirúrgica Brasileira","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/acb370102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ABSTRACT Introduction: Myocardial ischemia-reperfusion (I/R) injury is one of the mechanisms contributing to the high mortality rate of acute myocardial infarction. Purpose: This study intended to study the role of naringin in cardiac I/R injury. Methods: AC16 cells (human cardiomyocyte cell line) were subjected to oxygen-glucose deprivation/recovery (OGD/R) treatment and/or naringin pretreatment. Then, the apoptosis was examined by flow cytometry and Western blotting. The concentration of IL-6, IL-8 and TNF-α was measured by enzyme-linked immunosorbent assay (ELISA) kits. How naringin influenced microRNA expression was examined by microarrays and quantitative real-time polymerase chain reaction (qRT-PCR). Dual luciferase reporter assay was employed to evaluate the interaction between miR-126 and GSK-3β. The GSK-3β/β-catenin signaling pathway was examined by Western blotting. Finally, rat myocardial I/R model was created to examine the effects of naringin in vivo. Results: Naringin pretreatment significantly decreased the cytokine release and apoptosis of cardiomyocytes exposed to OGD/R. Bioinformatical analysis revealed that naringin upregulated miR-126 expression considerably. Also, it was found that miR-126 can bind GSK-3β and downregulate its expression, suggesting that naringin could decrease GSK-3β activity. Next, we discovered that naringin increased β-catenin activity in cardiomyocytes treated with OGD/R by inhibiting GSK-3β expression. Our animal experiments showed that naringin pre-treatment or miR-126 agomir alleviated myocardial I/R. Conclusions: Naringin preconditioning can reduce myocardial I/R injury via regulating miR-126/GSK-3β/β-catenin signaling pathway, and this chemical can be used to treat acute myocardial infarction.