以用户为中心的视频流QoE的实证分析与预测

Maria Plakia, Michalis Katsarakis, Paulos Charonyktakis, M. Papadopouli, Ioannis Markopoulos
{"title":"以用户为中心的视频流QoE的实证分析与预测","authors":"Maria Plakia, Michalis Katsarakis, Paulos Charonyktakis, M. Papadopouli, Ioannis Markopoulos","doi":"10.1109/QoMEX.2016.7498962","DOIUrl":null,"url":null,"abstract":"Assessing the impact of different network conditions on user experience is important for improving the telecommunication services. We have developed a modular framework that includes monitoring and data collection tools and algorithms for user-centric analysis and prediction of the QoE in video streaming. The MLQoE employs several machine learning (ML) algorithms and tunes their hyper-parameters. It dynamically selects the ML algorithm that exhibits the best performance and its parameters automatically based on the input (e.g., network and systems metrics). We applied the MLQoE for predicting the QoE of the video streaming service in the context of two field studies, one performed in the production environment of a large telecom operator and the other at our Institute. The analysis indicated the parameters with the dominant impact on the perceived QoE and revealed that the QoE vary across users. This motivates the use of customized adaptation mechanisms in video streaming under network performance degradation. The MLQoE results in fairly accurate predictions e.g., a median error in predicting the QoE of 0.0991 and 0.5517 in the first (second) field study, respectively, on the MOS scale.","PeriodicalId":6645,"journal":{"name":"2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX)","volume":"112 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On user-centric analysis and prediction of QoE for video streaming using empirical measurements\",\"authors\":\"Maria Plakia, Michalis Katsarakis, Paulos Charonyktakis, M. Papadopouli, Ioannis Markopoulos\",\"doi\":\"10.1109/QoMEX.2016.7498962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assessing the impact of different network conditions on user experience is important for improving the telecommunication services. We have developed a modular framework that includes monitoring and data collection tools and algorithms for user-centric analysis and prediction of the QoE in video streaming. The MLQoE employs several machine learning (ML) algorithms and tunes their hyper-parameters. It dynamically selects the ML algorithm that exhibits the best performance and its parameters automatically based on the input (e.g., network and systems metrics). We applied the MLQoE for predicting the QoE of the video streaming service in the context of two field studies, one performed in the production environment of a large telecom operator and the other at our Institute. The analysis indicated the parameters with the dominant impact on the perceived QoE and revealed that the QoE vary across users. This motivates the use of customized adaptation mechanisms in video streaming under network performance degradation. The MLQoE results in fairly accurate predictions e.g., a median error in predicting the QoE of 0.0991 and 0.5517 in the first (second) field study, respectively, on the MOS scale.\",\"PeriodicalId\":6645,\"journal\":{\"name\":\"2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX)\",\"volume\":\"112 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QoMEX.2016.7498962\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QoMEX.2016.7498962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

评估不同网络条件对用户体验的影响,对于改善电信服务具有重要意义。我们开发了一个模块化框架,其中包括监控和数据收集工具以及算法,用于以用户为中心的视频流QoE分析和预测。MLQoE采用了几种机器学习(ML)算法,并调整了它们的超参数。它动态选择表现出最佳性能的ML算法及其参数自动基于输入(例如,网络和系统指标)。我们在两个实地研究的背景下应用MLQoE来预测视频流服务的QoE,一个是在大型电信运营商的生产环境中进行的,另一个是在我们研究所进行的。分析表明,对感知生活质量有主导影响的参数,并揭示了不同用户的生活质量存在差异。这促使在网络性能下降的视频流中使用自定义适应机制。MLQoE的预测结果相当准确,例如,第一(第二)次实地研究在MOS量表上预测QoE的中位误差分别为0.0991和0.5517。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On user-centric analysis and prediction of QoE for video streaming using empirical measurements
Assessing the impact of different network conditions on user experience is important for improving the telecommunication services. We have developed a modular framework that includes monitoring and data collection tools and algorithms for user-centric analysis and prediction of the QoE in video streaming. The MLQoE employs several machine learning (ML) algorithms and tunes their hyper-parameters. It dynamically selects the ML algorithm that exhibits the best performance and its parameters automatically based on the input (e.g., network and systems metrics). We applied the MLQoE for predicting the QoE of the video streaming service in the context of two field studies, one performed in the production environment of a large telecom operator and the other at our Institute. The analysis indicated the parameters with the dominant impact on the perceived QoE and revealed that the QoE vary across users. This motivates the use of customized adaptation mechanisms in video streaming under network performance degradation. The MLQoE results in fairly accurate predictions e.g., a median error in predicting the QoE of 0.0991 and 0.5517 in the first (second) field study, respectively, on the MOS scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信