A. Tweedie, R. O’Leary, G. Harvey, A. Gachagan, C. Holmes, P. Wilcox, B. Drinkwater
{"title":"11D-2浸泡无损评价中体积成像的全聚焦方法","authors":"A. Tweedie, R. O’Leary, G. Harvey, A. Gachagan, C. Holmes, P. Wilcox, B. Drinkwater","doi":"10.1109/ULTSYM.2007.259","DOIUrl":null,"url":null,"abstract":"This paper describes the use of a 550 (25times22) element 2 MHz 2D piezoelectric composite array in immersion mode to image an aluminum test block containing a collection of artificial defects. The defects included a 1 mm diameter side-drilled hole, a collection of 1 mm slot defects with varying degrees of skew to the normal and a flat bottomed hole. The data collection was carried out using the full matrix capture; a scanning procedure was developed to allow the operation of the large element count array through a conventional 64-channel phased array controller. A 3D TFM algorithm capable of imaging in a dual media environment was implemented in MATLAB for the offline processing the raw scan data. This algorithm facilitates the creation of 3D images of defects while accounting for refraction effects at material boundaries. In each of the test samples interrogated the defects, and their spatial position, are readily identified using TFM. Defect directional information has been characterized using VTFM for defect exhibiting angles up to and including 45deg of skew.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"7 1","pages":"1017-1020"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"11D-2 Total Focussing Method for Volumetric Imaging in Immersion Non Destructive Evaluation\",\"authors\":\"A. Tweedie, R. O’Leary, G. Harvey, A. Gachagan, C. Holmes, P. Wilcox, B. Drinkwater\",\"doi\":\"10.1109/ULTSYM.2007.259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the use of a 550 (25times22) element 2 MHz 2D piezoelectric composite array in immersion mode to image an aluminum test block containing a collection of artificial defects. The defects included a 1 mm diameter side-drilled hole, a collection of 1 mm slot defects with varying degrees of skew to the normal and a flat bottomed hole. The data collection was carried out using the full matrix capture; a scanning procedure was developed to allow the operation of the large element count array through a conventional 64-channel phased array controller. A 3D TFM algorithm capable of imaging in a dual media environment was implemented in MATLAB for the offline processing the raw scan data. This algorithm facilitates the creation of 3D images of defects while accounting for refraction effects at material boundaries. In each of the test samples interrogated the defects, and their spatial position, are readily identified using TFM. Defect directional information has been characterized using VTFM for defect exhibiting angles up to and including 45deg of skew.\",\"PeriodicalId\":6355,\"journal\":{\"name\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"volume\":\"7 1\",\"pages\":\"1017-1020\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2007.259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
11D-2 Total Focussing Method for Volumetric Imaging in Immersion Non Destructive Evaluation
This paper describes the use of a 550 (25times22) element 2 MHz 2D piezoelectric composite array in immersion mode to image an aluminum test block containing a collection of artificial defects. The defects included a 1 mm diameter side-drilled hole, a collection of 1 mm slot defects with varying degrees of skew to the normal and a flat bottomed hole. The data collection was carried out using the full matrix capture; a scanning procedure was developed to allow the operation of the large element count array through a conventional 64-channel phased array controller. A 3D TFM algorithm capable of imaging in a dual media environment was implemented in MATLAB for the offline processing the raw scan data. This algorithm facilitates the creation of 3D images of defects while accounting for refraction effects at material boundaries. In each of the test samples interrogated the defects, and their spatial position, are readily identified using TFM. Defect directional information has been characterized using VTFM for defect exhibiting angles up to and including 45deg of skew.