掺硼纳米金刚石的制备与表征

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yan Xianrong , Li Xiaojie , Wang Xiaohong , Yan Honghao
{"title":"掺硼纳米金刚石的制备与表征","authors":"Yan Xianrong ,&nbsp;Li Xiaojie ,&nbsp;Wang Xiaohong ,&nbsp;Yan Honghao","doi":"10.1016/S1875-5372(19)30010-4","DOIUrl":null,"url":null,"abstract":"<div><p>Boron-doped nanodiamond was prepared by a high-temperature vacuum-diffusion method. Thermogravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the prepared material. Results show that the product mainly contains C, O, and B in mass fractions of 92.08%, 7.14%, and 0.78%, respectively. In addition to diamond (111)<sub>D</sub> and (220)<sub>D</sub> diffraction peaks, hexagonal diamond (100)<sub>D</sub> diffraction peaks are also observed in the XRD pattern of the boron-doped product. The introduction of B atoms increases the defect content in the nanodiamond and causes the Raman G peak to move to 1620 cm<sup>−1</sup>. B atoms are mainly present in two forms in the diamond lattice: substitutional carbon atoms in C-B bonds, and being bonded with impurity elements (such as B-O). The shape and morphology of the boron-doped nanodiamond particles (particle size of detonation nanodiamond, 2∼10 nm) exhibit no obvious changes compared to the pristine nanodiamond. However, a small amount of cubic diamond is observed. In conclusion, the initial oxidation temperature of the boron-doped nanodiamond increases by 175 °C, the oxidation rate is slower, and the thermal stability is improved.</p></div>","PeriodicalId":21056,"journal":{"name":"稀有金属材料与工程","volume":"47 12","pages":"Pages 3634-3639"},"PeriodicalIF":0.6000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-5372(19)30010-4","citationCount":"1","resultStr":"{\"title\":\"Preparation and Characterization of Boron-Doped Nanodiamond\",\"authors\":\"Yan Xianrong ,&nbsp;Li Xiaojie ,&nbsp;Wang Xiaohong ,&nbsp;Yan Honghao\",\"doi\":\"10.1016/S1875-5372(19)30010-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Boron-doped nanodiamond was prepared by a high-temperature vacuum-diffusion method. Thermogravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the prepared material. Results show that the product mainly contains C, O, and B in mass fractions of 92.08%, 7.14%, and 0.78%, respectively. In addition to diamond (111)<sub>D</sub> and (220)<sub>D</sub> diffraction peaks, hexagonal diamond (100)<sub>D</sub> diffraction peaks are also observed in the XRD pattern of the boron-doped product. The introduction of B atoms increases the defect content in the nanodiamond and causes the Raman G peak to move to 1620 cm<sup>−1</sup>. B atoms are mainly present in two forms in the diamond lattice: substitutional carbon atoms in C-B bonds, and being bonded with impurity elements (such as B-O). The shape and morphology of the boron-doped nanodiamond particles (particle size of detonation nanodiamond, 2∼10 nm) exhibit no obvious changes compared to the pristine nanodiamond. However, a small amount of cubic diamond is observed. In conclusion, the initial oxidation temperature of the boron-doped nanodiamond increases by 175 °C, the oxidation rate is slower, and the thermal stability is improved.</p></div>\",\"PeriodicalId\":21056,\"journal\":{\"name\":\"稀有金属材料与工程\",\"volume\":\"47 12\",\"pages\":\"Pages 3634-3639\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1875-5372(19)30010-4\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"稀有金属材料与工程\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1875537219300104\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"稀有金属材料与工程","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875537219300104","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

采用高温真空扩散法制备了掺硼纳米金刚石。利用热重分析、x射线光电子能谱、x射线衍射(XRD)、傅里叶变换红外光谱、拉曼光谱和透射电镜对制备的材料进行了表征。结果表明,该产品主要含C、O和B,质量分数分别为92.08%、7.14%和0.78%。在掺硼产物的XRD图谱中,除了金刚石(111)D和金刚石(220)D衍射峰外,还观察到六角形金刚石(100)D衍射峰。B原子的引入增加了纳米金刚石中的缺陷含量,导致拉曼G峰移动到1620 cm−1。B原子在金刚石晶格中主要以两种形式存在:在C-B键上取代碳原子,与杂质元素(如B- o)成键。与原始纳米金刚石相比,掺硼纳米金刚石(爆轰纳米金刚石粒径为2 ~ 10 nm)的形状和形貌没有明显变化。然而,观察到少量的立方金刚石。综上所述,掺硼纳米金刚石的初始氧化温度提高了175℃,氧化速率减慢,热稳定性提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preparation and Characterization of Boron-Doped Nanodiamond

Boron-doped nanodiamond was prepared by a high-temperature vacuum-diffusion method. Thermogravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the prepared material. Results show that the product mainly contains C, O, and B in mass fractions of 92.08%, 7.14%, and 0.78%, respectively. In addition to diamond (111)D and (220)D diffraction peaks, hexagonal diamond (100)D diffraction peaks are also observed in the XRD pattern of the boron-doped product. The introduction of B atoms increases the defect content in the nanodiamond and causes the Raman G peak to move to 1620 cm−1. B atoms are mainly present in two forms in the diamond lattice: substitutional carbon atoms in C-B bonds, and being bonded with impurity elements (such as B-O). The shape and morphology of the boron-doped nanodiamond particles (particle size of detonation nanodiamond, 2∼10 nm) exhibit no obvious changes compared to the pristine nanodiamond. However, a small amount of cubic diamond is observed. In conclusion, the initial oxidation temperature of the boron-doped nanodiamond increases by 175 °C, the oxidation rate is slower, and the thermal stability is improved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
稀有金属材料与工程
稀有金属材料与工程 工程技术-材料科学:综合
CiteScore
1.30
自引率
57.10%
发文量
17973
审稿时长
4.2 months
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信