通过扭转的哈密顿作用的量子化

Pub Date : 2018-04-17 DOI:10.4310/JSG.2020.V18.N2.A2
P. Bieliavsky, C. Esposito, R. Nest
{"title":"通过扭转的哈密顿作用的量子化","authors":"P. Bieliavsky, C. Esposito, R. Nest","doi":"10.4310/JSG.2020.V18.N2.A2","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfel'd twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfel'd approach.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2018-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantization of Hamiltonian coactions via twist\",\"authors\":\"P. Bieliavsky, C. Esposito, R. Nest\",\"doi\":\"10.4310/JSG.2020.V18.N2.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfel'd twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfel'd approach.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2018-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.V18.N2.A2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N2.A2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了具有Drinfel扭曲结构的Hopf代数的量子哈密顿(co)作用的概念。2-cocycles)。首先,我们定义了与2环结构相容的泊松李群的经典哈密顿作用,并讨论了一个具体的例子。这允许我们在经典动量图的基础上,构造一个Hopf协同作用下的量子动量图,并使用德林费尔方法将其量子化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Quantization of Hamiltonian coactions via twist
In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfel'd twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfel'd approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信