通过扭转的哈密顿作用的量子化

IF 0.6 3区 数学 Q3 MATHEMATICS
P. Bieliavsky, C. Esposito, R. Nest
{"title":"通过扭转的哈密顿作用的量子化","authors":"P. Bieliavsky, C. Esposito, R. Nest","doi":"10.4310/JSG.2020.V18.N2.A2","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfel'd twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfel'd approach.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"14 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2018-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantization of Hamiltonian coactions via twist\",\"authors\":\"P. Bieliavsky, C. Esposito, R. Nest\",\"doi\":\"10.4310/JSG.2020.V18.N2.A2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfel'd twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfel'd approach.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2018-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2020.V18.N2.A2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2020.V18.N2.A2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了具有Drinfel扭曲结构的Hopf代数的量子哈密顿(co)作用的概念。2-cocycles)。首先,我们定义了与2环结构相容的泊松李群的经典哈密顿作用,并讨论了一个具体的例子。这允许我们在经典动量图的基础上,构造一个Hopf协同作用下的量子动量图,并使用德林费尔方法将其量子化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantization of Hamiltonian coactions via twist
In this paper we introduce a notion of quantum Hamiltonian (co)action of Hopf algebras endowed with Drinfel'd twist structure (resp., 2-cocycles). First, we define a classical Hamiltonian action in the setting of Poisson Lie groups compatible with the 2-cocycle stucture and we discuss a concrete example. This allows us to construct, out of the classical momentum map, a quantum momentum map in the setting of Hopf coactions and to quantize it by using Drinfel'd approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信